(1)逻辑斯特回归来源于逻辑斯特分布,例如常见的sigmoid函数就是logistic分布函数中r = 1,u = 0;的特殊形式。
其表达式为是一条S型的曲线
对于二分类问题,逻辑斯特回归的目标是找到一条曲线,很好的将两个类别分开。(注:逻辑斯特回归也可解决多分类问题)
对于输入向量,若判别函数判定它大于0,则其类别是1,若判定它小于0,则其类别是0。在逻辑斯特回归中通过判定其属于1和属于0 的概率来进行判别。
(注意这两个公式可以互换,只与训练后的w无关)
一个事件发生的几率是该事件发生的概率和不发生的概率的比值。
输出Y=1的对数几率是输入x的线性函数。
通过极大似然估计来求出模型中的参数。对于训练集X中的每一个数据x,设,
则似然函数为,取对数后的对数似然函数为
对其求极大值就可以得到w的估计值,可以使用最简单的梯度下降法求得。
(2)最大熵模型
最大熵模型是概率图模型的一种,属于生成式模型。
最大熵原理指出,对一个随机事件的概率分布进行预测时,预测应当满足全部已知的约束,而对未知的情况不要做任何主观假设。在这种情况下,概率分布最均匀,预测的风险最小,因此得到的概率分布的熵是最大。
逻辑回归跟最大熵模型没有本质区别。逻辑回归是最大熵对应类别为二类时的特殊情况,也就是当逻辑回归类别扩展到多类别时,就是最大熵模型。