交替最小二乘法(ALS)

ALS是alternating least squares的缩写 , 意为交替最小二乘法;而ALS-WR是alternating-least-squares with weighted-λ -regularization的缩写,意为加权正则化交替最小二乘法。该方法常用于基于矩阵分解的推荐系统中。例如:将用户(user)对商品(item)的评分矩阵分解为两个矩阵:一个是用户对商品隐含特征的偏好矩阵,另一个是商品所包含的隐含特征的矩阵。在这个矩阵分解的过程中,评分缺失项得到了填充,也就是说我们可以基于这个填充的评分来给用户最商品推荐了。
ALS
由于评分数据中有大量的缺失项,传统的矩阵分解SVD(奇异值分解)不方便处理这个问题,而ALS能够很好的解决这个问题。对于R(m×n)的矩阵,ALS旨在找到两个低维矩阵X(m×k)和矩阵Y(n×k),来近似逼近R(m×n),即:

其中R(m×n)代表用户对商品的评分矩阵,X(m×k)代表用户对隐含特征的偏好矩阵,Y(n×k)表示商品所包含隐含特征的矩阵,T表示矩阵Y的转置。实际中,一般取k<<min(m, n), 也就是相当于降维了。这里的低维矩阵,有的地方也叫低秩矩阵。
为了找到使低秩矩阵X和Y尽可能地逼近R,需要最小化下面的平方误差损失函数:
gif.latex
其中xu
(1×k)表示示用户u的偏好的隐含特征向量,yi
(1×k)表示商品i包含的隐含特征向量, rui
表示用户u对商品i的评分, 向量xu
和yi
的内积xu
T
yi
是用户u对商品i评分的近似。

损失函数一般需要加入正则化项来避免过拟合等问题,我们使用L2正则化,所以上面的公式改造为:
gif.latex
其中λ是正则化项的系数。
到这里,协同过滤就成功转化成了一个优化问题。由于变量xu和yi耦合到一起,这个问题并不好求解,所以我们引入了ALS,也就是说我们可以先固定Y(例如随机初始化X),然后利用公式(2)先求解X,然后固定X,再求解Y,如此交替往复直至收敛,即所谓的交替最小二乘法求解法。
具体求解方法说明如下:
先固定Y, 将损失函数L(X,Y)对*xu
*求偏导,并令导数=0,得到:


同理固定X,可得:

其中ru(1×n)是R的第u行,ri(1×m)是R的第i列, I是k×k的单位矩阵。
迭代步骤:首先随机初始化Y,利用公式(3)更新得到X, 然后利用公式(4)更新Y, 直到均方根误差变RMSE化很小或者到达最大迭代次数。


ALS-WR
上文提到的模型适用于解决有明确评分矩阵的应用场景,然而很多情况下,用户没有明确反馈对商品的偏好,也就是没有直接打分,我们只能通过用户的某些行为来推断他对商品的偏好。比如,在电视节目推荐的问题中,对电视节目收看的次数或者时长,这时我们可以推测次数越多,看得时间越长,用户的偏好程度越高,但是对于没有收看的节目,可能是由于用户不知道有该节目,或者没有途径获取该节目,我们不能确定的推测用户不喜欢该节目。ALS-WR通过置信度权重来解决这些问题:对于更确信用户偏好的项赋以较大的权重,对于没有反馈的项,赋以较小的权重。ALS-WR模型的形式化说明如下:
ALS-WR的目标函数:

其中α是置信度系数。
求解方式还是最小二乘法:

其中Cu
其中Cu
是n×n的对角矩阵,Ci是m×m的对角矩阵;Cuii = cui, Ciii = cii。
参考来源:http://www.fuqingchuan.com/2015/03/812.html

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • 第一部分 算法原理及推导 1.1 算法原理介绍 背景介绍:ALS是交替最小二乘的简称,在机器学习上下文中,ALS...
    sheetakiki阅读 13,253评论 0 11
  • Spark的MLlib实现了协同过滤(Collaborative Filtering)这个功能。官网文档链接 熟悉...
    shohokuooo阅读 7,111评论 0 53
  • 推荐系统有着广泛的应用,电影推荐,商品推荐等都用到推荐系统。本文介绍协同过滤算法的基本原理,进而理解推荐系统的实现...
    kamidox阅读 11,003评论 8 42
  • 一、实验目的 学习使用 weka 中的常用分类器,完成数据分类任务。 二、实验内容 了解 weka 中 explo...
    yigoh阅读 8,638评论 5 4
  • 概述及标签体系搭建 1 概述 随着信息技术的迅速发展和信息内容的日益增长,“信息过载”问题愈来愈严重,愈发带来很大...
    JinkeyAI阅读 22,927评论 10 241