BMI598: Natural Language Processing

Author: Zongwei Zhou | 周纵苇
Weibo: @MrGiovanni
Email: zongweiz@asu.edu

1. Token Features


1.1 token feature

  • case folding
  • punctuation (标点)
  • prefix/stem patterns
  • word shape
  • character n-grams

1.2 context feature

  • token feature from n tokens before and n tokens after
  • word n-grams, n=2,3,4
  • skip-n-grams

1.3 sentence features

  • sentence length
  • case-folding patterns
  • presence of digits
  • enumeration tokens at the start
  • a colon at the end
  • whether verbs indicate past or future tense

1.4 section features

  • headings
  • subsections

1.5 document features

  • case pattern across the document
  • document length indicator

1.6 normalization

Stemming和Lemmatization的区别
Stemming:基于规则

from nltk.stem.porter import PorterStemmer
porter_stemmer = PorterStemmer()
porter_stemmer.stem('wolves')
# 结果里es被去掉了
u'wolv'

Lemmatization:基于字典

from nltk.stem import WordNetLemmatizer
lemmatizer = WordNetLemmatizer()
lemmatizer.lemmatize('wolves')
# 结果准确
u'wolf'

2. Word Embedding


2.1 tf-idf

特征的长度是整个字典单词数
关键词:计数
参考这个example:https://en.wikipedia.org/wiki/Tf%E2%80%93idf

2.2 word2vec

特征长度是固定的,一般比较小(几百)

Start with V random 300-dimensional vectors as initial embeddings
Use logistic regression, the second most basic classifier used in machine learning after naïve bayes

  • Take a corpus and take pairs of words that co-occur as positive examples
  • Take pairs of words that don't co-occur as negative examples
  • Train the classifier to distinguish these by slowly adjusting all the embeddings to improve the classifier performance
  • Throw away the classifier code and keep the embeddings.

Pre-trained models are available for download
https://code.google.com/archive/p/word2vec/
You can use gensim (in python) to access the models
http://nlp.stanford.edu/projects/glove/

Brilliant insight: Use running text as implicitly supervised training data!

Setup
Let's represent words as vectors of some length (say 300), randomly initialized.
So we start with 300 * V random parameters. V是字典中单词的数目。
Over the entire training set, we’d like to adjust those word vectors such that we

  • Maximize the similarity of the target word, context word pairs (t,c) drawn from the positive data
  • Minimize the similarity of the (t,c) pairs drawn from the negative data.

Learning the classifier
Iterative process.
We’ll start with 0 or random weights
Then adjust the word weights to

  • make the positive pairs more likely
  • and the negative pairs less likely over the entire training set:

3. Sentence vectors


Distributed Representations of Sentences and Documents

PV-DM [???]

  • Paragraph as a pseudo word
  • The algorithm learns a matrix of D vectors, corresponding to D paragraphs
  • in addition to W word vectors
  • Contexts are fixed length
  • Sampled from a sliding window over the paragraph
  • PV and WV are trained using Stochastic Gradient Descent

What about the unseen paragraphs? [???]

  • Add more columns to D (the paragraph vectors matrix)
  • Learn the new D, while holding U, b, and W fixed
  • We use D as features in a standard classifier

PV-DBOW [???]

  • Works by using a sliding window on a paragraph
  • then predict words randomly sampled from the paragraph
  • prediction: a classification task of the random word given the PV
When predicting sentiment of a sentence, use paragraph vector instead of single word embedding.

4. Neural Network


\sigma(z)=\frac{1}{1+e^{-z}}
softmax(z_i)=\frac{e^{z_i}}{\sum_{j=1}^{d}d^{z_j}} 1\leq i\leq d

import numpy as np
z = [1.0, 2.0, 3.0, 4.0, 1.0, 2.0, 3.0]
softmax = lambda z:np.exp(z)/np.sum(np.exp(z))
softmax(z)
array([0.02364054, 0.06426166, 0.1746813 , 0.474833  , 0.02364054, 0.06426166, 0.1746813 ])

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

5. Highlight summary


  • I2b2 challenge – concepts, relations
  • Vector semantics – long vectors
  • Vector semantics – Word embeddings
  • Vector semantics – how to compute word embeddings
  • Vector semantics – Paragraph vectors
  • UMLS and Metamap lite (max match algorithm)
  • Neuron and math behind it
  • Feed forward neural network model - math behind it
  • Example FFN for predicting the next word
  • Keras – Intro and validation
  • Keras examples – simple solutions to concept extraction and relations
  • Data preparation for concept extraction and relation classification
  • IBM MADE 1.0 paper: concepts/relations using BiLSTM CRF/Attention
  • Recurrent neural networks and LSTM
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,884评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,347评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,435评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,509评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,611评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,837评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,987评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,730评论 0 267
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,194评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,525评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,664评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,334评论 4 330
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,944评论 3 313
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,764评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,997评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,389评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,554评论 2 349

推荐阅读更多精彩内容