java concurrent 之 LinkedBlockingQueue
一个基于已链接节点的、范围任意的 blocking queue。此队列按 FIFO(先进先出)排序元素。队列的头部 是在队列中时间最长的元素。队列的尾部 是在队列中时间最短的元素。新元素插入到队列的尾部,并且队列获取操作会获得位于队列头部的元素。链接队列的吞吐量通常要高于基于数组的队列,但是在大多数并发应用程序中,其可预知的性能要低。
可选的容量范围构造方法参数作为防止队列过度扩展的一种方法。如果未指定容量,则它等于 Integer.MAX_VALUE。除非插入节点会使队列超出容量,否则每次插入后会动态地创建链接节点。
BlockingQueue<String> unbounded = new LinkedBlockingQueue<String>();
BlockingQueue<String> bounded = new LinkedBlockingQueue<String>(1024);
bounded.put("Value");
String value = bounded.take();
可以采用下面的实例进行尝试 take() pull() remove() offer() add()等方法的区别
package com.viashare.linkedblockingqueue;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.LinkedBlockingQueue;
/**
* Created by Jeffy on 15/12/11.
*/
public class LinkedBlockingQueueMain {
public static void main(String[] args) throws InterruptedException {
LinkedBlockingQueue<String> linkedBlockingQueue = new LinkedBlockingQueue<>(2);
new Thread(new ProducerTask(linkedBlockingQueue)).start();
new Thread(new ConsumerTask(linkedBlockingQueue)).start();
Thread.currentThread().sleep(10000);
System.err.println("finished");
}
static class ProducerTask implements Runnable {
private BlockingQueue<String> queue;
public ProducerTask(BlockingQueue<String> queue) {
this.queue = queue;
}
@Override
public void run() {
try {
Thread.sleep(2000);
queue.put("name1");
Thread.sleep(2000);
queue.put("name2");
Thread.sleep(2000);
System.err.println(queue.offer("name3"));
System.err.println(queue.size());
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
static class ConsumerTask implements Runnable {
private BlockingQueue<String> queue;
public ConsumerTask(BlockingQueue<String> queue) {
this.queue = queue;
}
@Override
public void run() {
while (true) {
try {
String info = queue.peek();
System.err.println(info);
} catch (Exception e) {
e.printStackTrace();
}
}
}
}
}