「kafka极简入门」言简意赅,精辟

前言

kafka是一款Apache组织下的一款开源流处理平台。由Scala开发语言编写实现。

流平台具有三个关键功能:

发布和订阅记录流,类似于消息队列或企业消息传递系统。

以容错的持久方式存储记录流。

处理记录流。

kafka的主要应用场景:

建立实时流数据管道,在系统之间进行数据传输。

构建实时流应用程序以转换或响应数据流。

kafka的几个核心概念,理解这几个概念对kafka的正确使用十分重要。

**1.topic**    消息主题,无论是发布还是消费都是以topic为单位,一般一个topic对应一种业务场景**2.partition**  分区,一个主题可以对应1~N个分区,kafka可以保证单个分区的消息的FIFO,而不能保证整个topic消息的FIFO(除非该topic只有一个partition)。kafka的高吞吐的原理也是主要通过增加分区实现的。

3. broker

一个broker表示一台服务器,一个broker可以包含多个主题的多个分区。多个broker可以构成kafka集群。每个broker有一个唯一的id。关于分区在broker上的分配策略后面会讲到。

4. producer

生产者,负责往指定的topic推送消息的角色。

5. consumer

消费者,负责从指定topic消费消息的角色。

6. consumer group

消费组,一个消费组可以包含多个消费者,一个分区只能同时给同一个消费组内的一个消费者消费(这里要注意,如果是多个消费组同时消费一个分区是允许的,而且各自的消费偏移量互不干扰)。**7.replication**    副本集,副本分首领(leader)副本和跟随(follower)副本, 分区至少有一个leader副本,0~N个follower副本,producer和consumer负责跟leader副本交互,follower只负责同步leader的数据,以防在leader挂掉的时候,选举一个follower当选新的leader从而实现高可用。

8.offset

偏移量,标识一个消费者在分区中消费到了哪个位置,消费者每次消费消息的时候都会带上offset,消费完可以自动提交当

最后

觉得此文不错的大佬们可以多多关注或者帮忙转发分享一下哦,感谢!!!!

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,456评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,370评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,337评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,583评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,596评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,572评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,936评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,595评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,850评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,601评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,685评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,371评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,951评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,934评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,167评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,636评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,411评论 2 342

推荐阅读更多精彩内容