yolo3训练自己的数据

训练自己的数据主要分为以下几个步骤:

A.数据集制作

1.制作VOC格式的xml文件

工具:labelImg (github上直接下载即可)

2.将VOC格式的xml文件转换成YOLO格式的txt文件

找到darknet/script目录下的脚本:voc_label.py,根据自己的数据集修改执行就行了。
本人设置:
sets = [('2007', 'train'), ('2007', 'val')]
classes=[ ] /一共18种类别

B.文件修改

1.关于 .data .names 两个文件修改非常简单,参考官网YOLOv3.txt连接中的文件。

举个栗子,本人对服务器类别识别训练设置:
.data文件:
classes=18
train=(train.txt所在路径)
valid=(2007_val.txt所在路径)
names=(.names所在文件夹/.names)
backup=(在darcknet下建一个文件夹,可命名为backup)
.names文件:
server.names保存所有服务器类型的名字

2.关于cfg修改,以6类目标检测为例,主要有以下几处调整(蓝色标出)#表示注释,根据训练和测试,自行修改。
[net]
# Testing
# batch=1
# subdivisions=1
# Training
 batch=64

 subdivisions=8

......

[convolutional]
size=1
stride=1
pad=1
filters=33###75

 

activation=linear

[yolo]
mask = 6,7,8
anchors = 10,13,  16,30,  33,23,  30,61,  62,45,  59,119,  116,90,  156,198,  373,326
classes=6###20
num=9
jitter=.3
ignore_thresh = .5
truth_thresh = 1
random=0###1

 

......

[convolutional]
size=1
stride=1
pad=1
filters=33###75
activation=linear

[yolo]
mask = 3,4,5
anchors = 10,13,  16,30,  33,23,  30,61,  62,45,  59,119,  116,90,  156,198,  373,326
classes=6###20
num=9
jitter=.3
ignore_thresh = .5
truth_thresh = 1
random=0###1

......

[convolutional]
size=1
stride=1
pad=1
filters=33###75
activation=linear

[yolo]
mask = 0,1,2
anchors = 10,13,  16,30,  33,23,  30,61,  62,45,  59,119,  116,90,  156,198,  373,326
classes=6###20
num=9
jitter=.3
ignore_thresh = .5
truth_thresh = 1
random=0###1

A.filters数目是怎么计算的:3x(classes数目+5),和聚类数目分布有关,论文中有说明;

B.如果想修改默认anchors数值,使用k-means即可;

C.如果显存很小,将random设置为0,即关闭多尺度训练;

D.其他参数如何调整,有空再补;

E.前100次迭代loss较大,后面会很快收敛;

Region xx: cfg文件中yolo-layer的索引;

Avg IOU: 当前迭代中,预测的box与标注的box的平均交并比,越大越好,期望数值为1;

Class: 标注物体的分类准确率,越大越好,期望数值为1;

obj: 越大越好,期望数值为1;

No obj: 越小越好;

.5R: 以IOU=0.5为阈值时候的recall; recall = 检出的正样本/实际的正样本

0.75R: 以IOU=0.75为阈值时候的recall;

count: 正样本数目。

本文参考:https://blog.csdn.net/lilai619/article/details/79695109/

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 222,104评论 6 515
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 94,816评论 3 399
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 168,697评论 0 360
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,836评论 1 298
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,851评论 6 397
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 52,441评论 1 310
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,992评论 3 421
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,899评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 46,457评论 1 318
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,529评论 3 341
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,664评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 36,346评论 5 350
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 42,025评论 3 334
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,511评论 0 24
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,611评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 49,081评论 3 377
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,675评论 2 359

推荐阅读更多精彩内容