```
################knn
####
#计算距离--前k个最近的--投票选择分类
####
from numpy import *
import operator
def createDataSet():
group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
labels = ['A','A','B','B']
return group, labels
###先保存上述文件 再import 记得切换路径到kNN文件
import kNN
group, labels=kNN.createDataSet()
#coding=UTF8
from numpy import *
import operator
def createDataSet():
"""
函数作用:构建一组训练数据(训练样本),共4个样本
同时给出了这4个样本的标签,及labels
"""
group = array([
[1.0, 1.1],
[1.0, 1.0],
[0. , 0. ],
[0. , 0.1]
])
labels = ['A', 'A', 'B', 'B']
return group, labels
def classify0(inX, dataset, labels, k):
"""
inX 是输入的测试样本,是一个[x, y]样式的
dataset 是训练样本集
labels 是训练样本标签
k 是top k最相近的
"""
# shape返回矩阵的[行数,列数],
# 那么shape[0]获取数据集的行数,
# 行数就是样本的数量
dataSetSize = dataset.shape[0]
"""
下面的求距离过程就是按照欧氏距离的公式计算的。
即 根号(x^2+y^2)
"""
# tile属于numpy模块下边的函数
# tile(A, reps)返回一个shape=reps的矩阵,矩阵的每个元素是A
# 比如 A=[0,1,2] 那么,tile(A, 2)= [0, 1, 2, 0, 1, 2]
# tile(A,(2,2)) = [[0, 1, 2, 0, 1, 2],
# [0, 1, 2, 0, 1, 2]]
# tile(A,(2,1,2)) = [[[0, 1, 2, 0, 1, 2]],
# [[0, 1, 2, 0, 1, 2]]]
# 上边那个结果的分开理解就是:
# 最外层是2个元素,即最外边的[]中包含2个元素,类似于[C,D],而此处的C=D,因为是复制出来的
# 然后C包含1个元素,即C=[E],同理D=[E]
# 最后E包含2个元素,即E=[F,G],此处F=G,因为是复制出来的
# F就是A了,基础元素
# 综合起来就是(2,1,2)= [C, C] = [[E], [E]] = [[[F, F]], [[F, F]]] = [[[A, A]], [[A, A]]]
# 这个地方就是为了把输入的测试样本扩展为和dataset的shape一样,然后就可以直接做矩阵减法了。
# 比如,dataset有4个样本,就是4*2的矩阵,输入测试样本肯定是一个了,就是1*2,为了计算输入样本与训练样本的距离
# 那么,需要对这个数据进行作差。这是一次比较,因为训练样本有n个,那么就要进行n次比较;
# 为了方便计算,把输入样本复制n次,然后直接与训练样本作矩阵差运算,就可以一次性比较了n个样本。
# 比如inX = [0,1],dataset就用函数返回的结果,那么
# tile(inX, (4,1))= [[ 0.0, 1.0],
# [ 0.0, 1.0],
# [ 0.0, 1.0],
# [ 0.0, 1.0]]
# 作差之后
# diffMat = [[-1.0,-0.1],
# [-1.0, 0.0],
# [ 0.0, 1.0],
# [ 0.0, 0.9]]
diffMat = tile(inX, (dataSetSize, 1)) - dataset
# diffMat就是输入样本与每个训练样本的差值,然后对其每个x和y的差值进行平方运算。
# diffMat是一个矩阵,矩阵**2表示对矩阵中的每个元素进行**2操作,即平方。
# sqDiffMat = [[1.0, 0.01],
# [1.0, 0.0 ],
# [0.0, 1.0 ],
# [0.0, 0.81]]
sqDiffMat = diffMat ** 2
# axis=1表示按照横轴,sum表示累加,即按照行进行累加。
# sqDistance = [[1.01],
# [1.0 ],
# [1.0 ],
# [0.81]]
sqDistance = sqDiffMat.sum(axis=1)
# 对平方和进行开根号
distance = sqDistance ** 0.5
# 按照升序进行快速排序,返回的是原数组的下标。
# 比如,x = [30, 10, 20, 40]
# 升序排序后应该是[10,20,30,40],他们的原下标是[1,2,0,3]
# 那么,numpy.argsort(x) = [1, 2, 0, 3]
sortedDistIndicies = distance.argsort()
# 存放最终的分类结果及相应的结果投票数
classCount = {}
# 投票过程,就是统计前k个最近的样本所属类别包含的样本个数
for i in range(k):
# index = sortedDistIndicies[i]是第i个最相近的样本下标
# voteIlabel = labels[index]是样本index对应的分类结果('A' or 'B')
voteIlabel = labels[sortedDistIndicies[i]]
# classCount.get(voteIlabel, 0)返回voteIlabel的值,如果不存在,则返回0
# 然后将票数增1
# 就是在字典里如果原来不存在这个key就设置这个key值为0,然后加一
classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1
# 把分类结果进行排序,然后返回得票数最多的分类结果
sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0]
if __name__== "__main__":
# 导入数据
dataset, labels = createDataSet()
inX = [0.1, 0.1]
# 简单分类
className = classify0(inX, dataset, labels, 3)
print('the class of test sample is %s' %className)
#####################在约会网站上使用knn
def file2matrix(filename):
"""
从文件中读入训练数据,并存储为矩阵
"""
fr = open(filename)
arrayOlines = fr.readlines()
numberOfLines = len(arrayOlines) #获取 n=样本的行数
returnMat = zeros((numberOfLines,3)) #创建一个2维矩阵用于存放训练样本数据,一共有n行,每一行存放3个数据
classLabelVector = [] #创建一个1维数组用于存放训练样本标签。
index = 0
for line in arrayOlines:
# 把回车符号给去掉
line = line.strip()
# 把每一行数据用\t分割
listFromLine = line.split('\t')
# 把分割好的数据放至数据集,其中index是该样本数据的下标,就是放到第几行
returnMat[index,:] = listFromLine[0:3]
# 把该样本对应的标签放至标签集,顺序与样本集对应。
classLabelVector.append(int(listFromLine[-1]))
index += 1
return returnMat,classLabelVector
def autoNorm(dataSet):
"""
训练数据归一化
"""
# 获取数据集中每一列的最小数值
# 以createDataSet()中的数据为例,group.min(0)=[0,0]
minVals = dataSet.min(0)
# 获取数据集中每一列的最大数值
# group.max(0)=[1, 1.1]
maxVals = dataSet.max(0)
# 最大值与最小的差值
ranges = maxVals - minVals
# 创建一个与dataSet同shape的全0矩阵,用于存放归一化后的数据
normDataSet = zeros(shape(dataSet))
m = dataSet.shape[0]
# 把最小值扩充为与dataSet同shape,然后作差,具体tile请翻看 第三节 代码中的tile
normDataSet = dataSet - tile(minVals, (m,1))
# 把最大最小差值扩充为dataSet同shape,然后作商,是指对应元素进行除法运算,而不是矩阵除法。
# 矩阵除法在numpy中要用linalg.solve(A,B)
normDataSet = normDataSet/tile(ranges, (m,1))
return normDataSet, ranges, minVals
def datingClassTest():
# 将数据集中10%的数据留作测试用,其余的90%用于训练
hoRatio = 0.10
datingDataMat,datingLabels = file2matrix('datingTestSet2.txt') #load data setfrom file
normMat, ranges, minVals = autoNorm(datingDataMat)
m = normMat.shape[0]
numTestVecs = int(m*hoRatio)
errorCount = 0.0
for i in range(numTestVecs):
classifierResult = classify0(normMat[i,:],normMat[numTestVecs:m,:],datingLabels[numTestVecs:m],3)
print("the classifier came back with: %d, the real answer is: %d, result is :%s" % (classifierResult, datingLabels[i],classifierResult==datingLabels[i]))
if (classifierResult != datingLabels[i]): errorCount += 1.0
print("the total error rate is: %f" % (errorCount/float(numTestVecs)))
print(errorCount)
```