在本篇文章里,我就来为你详细介绍一下 Kubernetes 里关于容器日志的处理方式。
首先需要明确的是,Kubernetes 里面对容器日志的处理方式,都叫作 cluster-level-logging,即:这个日志处理系统,与容器、Pod 以及 Node 的生命周期都是完全无关的。这种设计当然是为了保证,无论是容器挂了、Pod 被删除,甚至节点宕机的时候,应用的日志依然可以被正常获取到。
而对于一个容器来说,当应用把日志输出到 stdout 和 stderr 之后,容器项目在默认情况下就会把这些日志输出到宿主机上的一个 JSON 文件里。这样,你通过 kubectl logs 命令就可以看到这些容器的日志了。
上述机制,就是我们今天要讲解的容器日志收集的基础假设。而如果你的应用是把文件输出到其他地方,比如直接输出到了容器里的某个文件里,或者输出到了远程存储里,那就属于特殊情况了。当然,我在文章里也会对这些特殊情况的处理方法进行讲述。
而 Kubernetes 本身,实际上是不会为你做容器日志收集工作的,所以为了实现上述 cluster-level-logging,你需要在部署集群的时候,提前对具体的日志方案进行规划。而 Kubernetes 项目本身,主要为你推荐了三种日志方案。
第一种,在 Node 上部署 logging agent,将日志文件转发到后端存储里保存起来。这个方案的架构图如下所示。

这里的核心就在于 logging agent ,它一般都会以 DaemonSet 的方式运行在节点上,然后将宿主机上的容器日志目录挂载进去,最后由 logging-agent 把日志转发出去。举个例子,我们可以通过 Fluentd 项目作为宿主机上的 logging-agent,然后把日志转发到远端的 ElasticSearch 里保存起来供将来进行检索。具体的操作过程,你可以通过阅读这篇文档来了解。另外,在很多 Kubernetes 的部署里,会自动为你启用 logrotate,在日志文件超过 10MB 的时候自动对日志文件进行 rotate 操作。
可以看到,在 Node 上部署 logging agent 最大的优点,在于一个节点只需要部署一个 agent,并且不会对应用和 Pod 有任何侵入性。所以,这个方案,在社区里是最常用的一种。但是也不难看到,这种方案的不足之处就在于,它要求应用输出的日志,都必须是直接输出到容器的 stdout 和 stderr 里。
Kubernetes 容器日志方案的第二种,就是对这种特殊情况的一个处理,即:当容器的日志只能输出到某些文件里的时候,我们可以通过一个 sidecar 容器把这些日志文件重新输出到 sidecar 的 stdout 和 stderr 上,这样就能够继续使用第一种方案了。这个方案的具体工作原理,如下所示。

第三种方案,就是通过一个 sidecar 容器,直接把应用的日志文件发送到远程存储里面去。也就是相当于把方案一里的 logging agent,放在了应用 Pod 里。这种方案的架构如下所示:

在这种方案里,你的应用还可以直接把日志输出到固定的文件里而不是 stdout,你的 logging-agent 还可以使用 fluentd,后端存储还可以是 ElasticSearch。只不过, fluentd 的输入源,变成了应用的日志文件。一般来说,我们会把 fluentd 的输入源配置保存在一个 ConfigMap 里,如下所示:
apiVersion: v1
kind: ConfigMap
metadata:
name: fluentd-config
data:
fluentd.conf: |
<source>
type tail
format none
path /var/log/1.log
pos_file /var/log/1.log.pos
tag count.format1
</source>
<source>
type tail
format none
path /var/log/2.log
pos_file /var/log/2.log.pos
tag count.format2
</source>
<match **>
type google_cloud
</match>
然后,我们在应用 Pod 的定义里,就可以声明一个 Fluentd 容器作为 sidecar,专门负责将应用生成的 1.log 和 2.log 转发到 ElasticSearch 当中。这个配置,如下所示:
apiVersion: v1
kind: Pod
metadata:
name: counter
spec:
containers:
- name: count
image: busybox
args:
- /bin/sh
- -c
- >
i=0;
while true;
do
echo "$i: $(date)" >> /var/log/1.log;
echo "$(date) INFO $i" >> /var/log/2.log;
i=$((i+1));
sleep 1;
done
volumeMounts:
- name: varlog
mountPath: /var/log
- name: count-agent
image: k8s.gcr.io/fluentd-gcp:1.30
env:
- name: FLUENTD_ARGS
value: -c /etc/fluentd-config/fluentd.conf
volumeMounts:
- name: varlog
mountPath: /var/log
- name: config-volume
mountPath: /etc/fluentd-config
volumes:
- name: varlog
emptyDir: {}
- name: config-volume
configMap:
name: fluentd-config
可以看到,这个 Fluentd 容器使用的输入源,就是通过引用我们前面编写的 ConfigMap 来指定的。这里我用到了 Projected Volume 来把 ConfigMap 挂载到 Pod 里。
需要注意的是,这种方案虽然部署简单,并且对宿主机非常友好,但是这个 sidecar 容器很可能会消耗较多的资源,甚至拖垮应用容器。并且,由于日志还是没有输出到 stdout 上,所以你通过 kubectl logs 是看不到任何日志输出的。以上,就是 Kubernetes 项目对容器应用日志进行管理最常用的三种手段了。
此文章为4月Day20学习笔记,内容来源于极客时间《深入剖析 Kubernetes》,强烈推荐该课程