容器日志收集与管理

在本篇文章里,我就来为你详细介绍一下 Kubernetes 里关于容器日志的处理方式。

首先需要明确的是,Kubernetes 里面对容器日志的处理方式,都叫作 cluster-level-logging,即:这个日志处理系统,与容器、Pod 以及 Node 的生命周期都是完全无关的。这种设计当然是为了保证,无论是容器挂了、Pod 被删除,甚至节点宕机的时候,应用的日志依然可以被正常获取到。

而对于一个容器来说,当应用把日志输出到 stdout 和 stderr 之后,容器项目在默认情况下就会把这些日志输出到宿主机上的一个 JSON 文件里。这样,你通过 kubectl logs 命令就可以看到这些容器的日志了。

上述机制,就是我们今天要讲解的容器日志收集的基础假设。而如果你的应用是把文件输出到其他地方,比如直接输出到了容器里的某个文件里,或者输出到了远程存储里,那就属于特殊情况了。当然,我在文章里也会对这些特殊情况的处理方法进行讲述。

而 Kubernetes 本身,实际上是不会为你做容器日志收集工作的,所以为了实现上述 cluster-level-logging,你需要在部署集群的时候,提前对具体的日志方案进行规划。而 Kubernetes 项目本身,主要为你推荐了三种日志方案。

第一种,在 Node 上部署 logging agent,将日志文件转发到后端存储里保存起来。这个方案的架构图如下所示。

image.png

这里的核心就在于 logging agent ,它一般都会以 DaemonSet 的方式运行在节点上,然后将宿主机上的容器日志目录挂载进去,最后由 logging-agent 把日志转发出去。举个例子,我们可以通过 Fluentd 项目作为宿主机上的 logging-agent,然后把日志转发到远端的 ElasticSearch 里保存起来供将来进行检索。具体的操作过程,你可以通过阅读这篇文档来了解。另外,在很多 Kubernetes 的部署里,会自动为你启用 logrotate,在日志文件超过 10MB 的时候自动对日志文件进行 rotate 操作。

可以看到,在 Node 上部署 logging agent 最大的优点,在于一个节点只需要部署一个 agent,并且不会对应用和 Pod 有任何侵入性。所以,这个方案,在社区里是最常用的一种。但是也不难看到,这种方案的不足之处就在于,它要求应用输出的日志,都必须是直接输出到容器的 stdout 和 stderr 里。

Kubernetes 容器日志方案的第二种,就是对这种特殊情况的一个处理,即:当容器的日志只能输出到某些文件里的时候,我们可以通过一个 sidecar 容器把这些日志文件重新输出到 sidecar 的 stdout 和 stderr 上,这样就能够继续使用第一种方案了。这个方案的具体工作原理,如下所示。


image.png

第三种方案,就是通过一个 sidecar 容器,直接把应用的日志文件发送到远程存储里面去。也就是相当于把方案一里的 logging agent,放在了应用 Pod 里。这种方案的架构如下所示:


image.png

在这种方案里,你的应用还可以直接把日志输出到固定的文件里而不是 stdout,你的 logging-agent 还可以使用 fluentd,后端存储还可以是 ElasticSearch。只不过, fluentd 的输入源,变成了应用的日志文件。一般来说,我们会把 fluentd 的输入源配置保存在一个 ConfigMap 里,如下所示:

apiVersion: v1
kind: ConfigMap
metadata:
  name: fluentd-config
data:
  fluentd.conf: |
    <source>
      type tail
      format none
      path /var/log/1.log
      pos_file /var/log/1.log.pos
      tag count.format1
    </source>
    
    <source>
      type tail
      format none
      path /var/log/2.log
      pos_file /var/log/2.log.pos
      tag count.format2
    </source>
    
    <match **>
      type google_cloud
    </match>

然后,我们在应用 Pod 的定义里,就可以声明一个 Fluentd 容器作为 sidecar,专门负责将应用生成的 1.log 和 2.log 转发到 ElasticSearch 当中。这个配置,如下所示:

apiVersion: v1
kind: Pod
metadata:
  name: counter
spec:
  containers:
  - name: count
    image: busybox
    args:
    - /bin/sh
    - -c
    - >
      i=0;
      while true;
      do
        echo "$i: $(date)" >> /var/log/1.log;
        echo "$(date) INFO $i" >> /var/log/2.log;
        i=$((i+1));
        sleep 1;
      done
    volumeMounts:
    - name: varlog
      mountPath: /var/log
  - name: count-agent
    image: k8s.gcr.io/fluentd-gcp:1.30
    env:
    - name: FLUENTD_ARGS
      value: -c /etc/fluentd-config/fluentd.conf
    volumeMounts:
    - name: varlog
      mountPath: /var/log
    - name: config-volume
      mountPath: /etc/fluentd-config
  volumes:
  - name: varlog
    emptyDir: {}
  - name: config-volume
    configMap:
      name: fluentd-config

可以看到,这个 Fluentd 容器使用的输入源,就是通过引用我们前面编写的 ConfigMap 来指定的。这里我用到了 Projected Volume 来把 ConfigMap 挂载到 Pod 里。

需要注意的是,这种方案虽然部署简单,并且对宿主机非常友好,但是这个 sidecar 容器很可能会消耗较多的资源,甚至拖垮应用容器。并且,由于日志还是没有输出到 stdout 上,所以你通过 kubectl logs 是看不到任何日志输出的。以上,就是 Kubernetes 项目对容器应用日志进行管理最常用的三种手段了。

此文章为4月Day20学习笔记,内容来源于极客时间《深入剖析 Kubernetes》,强烈推荐该课程

©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

相关阅读更多精彩内容

友情链接更多精彩内容