网关限流介绍及实现

网关可以做很多的事情,比如,限流,当我们的系统被频繁的请求的时候,就有可能 将系统压垮,所以 为了解决这个问题,需要在每一个微服务中做限流操作,但是如果有了网关,那么就可以在网关系统做限流,因为所有的请求都需要先通过网关系统才能路由到微服务中。


1557909861570.png

令牌桶算法

令牌桶算法是比较常见的限流算法之一,大概描述如下:

1)所有的请求在处理之前都需要拿到一个可用的令牌才会被处理;

2)根据限流大小,设置按照一定的速率往桶里添加令牌;

3)桶设置最大的放置令牌限制,当桶满时、新添加的令牌就被丢弃或者拒绝;

4)请求达到后首先要获取令牌桶中的令牌,拿着令牌才可以进行其他的业务逻辑,处理完业务逻辑之后,将令牌直接删除;

5)令牌桶有最低限额,当桶中的令牌达到最低限额的时候,请求处理完之后将不会删除令牌,以此保证足够的限流

如下图:


1557910299016.png

这个算法的实现,有很多技术,Guaua是其中之一,redis客户端也有其实现。

网关限流代码实现

(1)spring cloud gateway 默认使用redis的RateLimter限流算法来实现。所以我们要使用首先需要引入redis的依赖 (这里需要使用响应式的redis依赖spring-boot-starter-data-redis-reactive)

<dependencies>
        <!--网管-->
    <dependency>
        <groupId>org.springframework.cloud</groupId>
        <artifactId>spring-cloud-starter-gateway</artifactId>
    </dependency>
        <!--熔断器-->
    <dependency>
        <groupId>org.springframework.cloud</groupId>
        <artifactId>spring-cloud-starter-netflix-hystrix</artifactId>
    </dependency>
        <!--eureka客户端-->
    <dependency>
        <groupId>org.springframework.cloud</groupId>
        <artifactId>spring-cloud-starter-netflix-eureka-client</artifactId>
    </dependency>
        <!--redis用于实现限流-->
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-data-redis-reactive</artifactId>
        </dependency>
   </dependencies>

(2)定义KeyResolver

在GatewayApplicatioin引导类中添加如下代码,KeyResolver用于计算某一个类型的限流的KEY也就是说,可以通过KeyResolver来指定限流的Key。

package com.changgou;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cloud.gateway.filter.ratelimit.KeyResolver;
import org.springframework.cloud.netflix.eureka.EnableEurekaClient;
import org.springframework.context.annotation.Bean;
import org.springframework.web.server.ServerWebExchange;
import reactor.core.publisher.Mono;

/**
 * @author :gzy
 * @date :Created in 2019/8/15
 * @description :
 * @version: 1.0
 */
@SpringBootApplication
@EnableEurekaClient
public class GatewayApplication {
    public static void main(String[] args) {
        SpringApplication.run(GatewayApplication.class);
    }
    @Bean
    //KeyResolver用于计算某一个类型的限流的KEY也就是说,可以通过KeyResolver来指定限流的Key。
    public KeyResolver ipKeyResolver(){
        return new KeyResolver() {
            @Override
            public Mono<String> resolve(ServerWebExchange exchange) {
                return Mono.just(exchange.getRequest().getRemoteAddress().getHostName());
            }
        };
    }
}

(3)application.yml配置

spring:
  application:
    name: gateway
  cloud:
    gateway:
      routes:
      #与微服务名称对应
      - id: goods
      # 路由地址(转发地址),这里根据服务名称,采用lb协议,会从Eureka注册中心获取服务请求地址
      # 路由地址如果通过lb协议加服务名称时,会自动使用负载均衡访问对应服务
      # 规则:lb协议+服务名称
        uri: lb://goods
        predicates:
        # 路由拦截地址(断言),请求路径要加goods,后面拦截器会自动去掉
        - Path=/goods/**
        #访问地址自动去掉一个前缀
        filters:
        - StripPrefix= 1
      - id: system
        uri: lb://system
        predicates:
        - Path=/system/**
        filters:
        - StripPrefix= 1
        - name: RequestRateLimiter #请求数限流 名字不能随便写
          args:
           key-resolver: "#{@ipKeyResolver}"
           redis-rate-limiter.replenishRate: 1 #同一个IP在一秒中只能访问一次
           redis-rate-limiter.burstCapacity: 1 #在突发情况下 一个IP在一秒中只能访问一次
  redis:
    host: 192.168.200.128
server:
  port: 9101
eureka:
  client:
    service-url:
      defaultZone: http://127.0.0.1:6868/eureka
  instance:
    prefer-ip-address: true

解释:

  • burstCapacity:令牌桶总容量。
  • replenishRate:令牌桶每秒填充平均速率。
  • key-resolver:用于限流的键的解析器的 Bean 对象的名字。它使用 SpEL 表达式根据#{@beanName}从 Spring 容器中获取 Bean 对象。

通过在replenishRate和中设置相同的值来实现稳定的速率burstCapacity。设置burstCapacity高于时,可以允许临时突发replenishRate。在这种情况下,需要在突发之间允许速率限制器一段时间(根据replenishRate),因为2次连续突发将导致请求被丢弃(HTTP 429 - Too Many Requests)

key-resolver: "#{@userKeyResolver}" 用于通过SPEL表达式来指定使用哪一个KeyResolver.

如上配置:

表示 一秒内,允许 一个请求通过,令牌桶的填充速率也是一秒钟添加一个令牌。

最大突发状况 也只允许 一秒内有一次请求,可以根据业务来调整 。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,542评论 6 504
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,822评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,912评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,449评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,500评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,370评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,193评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,074评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,505评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,722评论 3 335
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,841评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,569评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,168评论 3 328
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,783评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,918评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,962评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,781评论 2 354

推荐阅读更多精彩内容