用Python实现遗传算法(GA)-(二)-One Max Problem

第二个项目是最大化问题,依旧沿用(一)的engine,这里的geneSet是0-1组合,即geneset = [0, 1]。本章节一共涉及三个py文件

1. genetic.py

import random
import statistics
import sys
import time

def _generate_parent(length, geneSet, get_fitness):
    genes = []
    while len(genes) < length:
        sampleSize = min(length - len(genes), len(geneSet))
        genes.extend(random.sample(geneSet, sampleSize))
    fitness = get_fitness(genes)
    return Chromosome(genes, fitness)

因为要求最大化数字,所以不再适合用string编码,所以直接用复制,即childGenes = parent.Genes[:],取代list constructure

def _mutate(parent, geneSet, get_fitness):
    childGenes = parent.Genes[:]
    index = random.randrange(0, len(parent.Genes))
    newGene, alternate = random.sample(geneSet, 2)
    childGenes[index] = alternate if newGene == childGenes[index] else newGene
    fitness = get_fitness(childGenes)
    return Chromosome(childGenes, fitness)
def get_best(get_fitness, targetLen, optimalFitness, geneSet, display):
    random.seed()
    bestParent = _generate_parent(targetLen, geneSet, get_fitness)
    display(bestParent)
    if bestParent.Fitness >= optimalFitness:
        return bestParent
    while True:
        child = _mutate(bestParent, geneSet, get_fitness)
        if bestParent.Fitness >= child.Fitness:
            continue
        display(child)
        if child.Fitness >= optimalFitness:
            return child
        bestParent = child
class Chromosome:
    def __init__(self, genes, fitness):
        self.Genes = genes
        self.Fitness = fitness

class Benchmark:
    @staticmethod
    def run(function):
        timings = []
        stdout = sys.stdout
        for i in range(100):
            sys.stdout = None
            startTime = time.time()
            function()
            seconds = time.time() - startTime
            sys.stdout = stdout
            timings.append(seconds)
            mean = statistics.mean(timings)
            if i < 10 or i % 10 == 9:
                print("{} {:3.2f} {:3.2f}".format(
                    1 + i, mean,
                    statistics.stdev(timings, mean) if i > 1 else 0))

2. guessPasswordTests.py

import datetime
import random
import unittest
import genetic

def get_fitness(guess, target):
    return sum(1 for expected, actual in zip(target, guess)
               if expected == actual)


def display(candidate, startTime):
    timeDiff = datetime.datetime.now() - startTime
    print("{}\t{}\t{}".format(
        ''.join(candidate.Genes),
        candidate.Fitness,
        timeDiff))

在display里面要重组基因成string

class GuessPasswordTests(unittest.TestCase):
    geneset = " abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!.,"

    def test_Hello_World(self):
        target = "Hello World!"
        self.guess_password(target)

    def test_For_I_am_fearfully_and_wonderfully_made(self):
        target = "For I am fearfully and wonderfully made."
        self.guess_password(target)

    def guess_password(self, target):
        startTime = datetime.datetime.now()

        def fnGetFitness(genes):
            return get_fitness(genes, target)

        def fnDisplay(candidate):
            display(candidate, startTime)

        optimalFitness = len(target)
        best = genetic.get_best(fnGetFitness, len(target), optimalFitness,
                                self.geneset, fnDisplay)
        self.assertEqual(''.join(best.Genes), target)

    def test_Random(self):
        length = 150
        target = ''.join(random.choice(self.geneset)
                         for _ in range(length))

        self.guess_password(target)

    def test_benchmark(self):
        genetic.Benchmark.run(self.test_Random)


if __name__ == '__main__':
    unittest.main()

3. oneMaxTest.py

import datetime
import unittest
import genetic


def get_fitness(genes):
    return genes.count(1)


def display(candidate, startTime):
    timeDiff = datetime.datetime.now() - startTime
    print("{}...{}\t{:3.2f}\t{}".format(
        ''.join(map(str, candidate.Genes[:15])),
        ''.join(map(str, candidate.Genes[-15:])),
        candidate.Fitness,
        timeDiff))


class OneMaxTests(unittest.TestCase):
    def test(self, length=100):
        geneset = [0, 1]
        startTime = datetime.datetime.now()

        def fnDisplay(candidate):
            display(candidate, startTime)

        def fnGetFitness(genes):
            return get_fitness(genes)

        optimalFitness = length
        best = genetic.get_best(fnGetFitness, length, optimalFitness,
                                geneset, fnDisplay)
        self.assertEqual(best.Fitness, optimalFitness)

    def test_benchmark(self):
        genetic.Benchmark.run(lambda: self.test(4000))


if __name__ == '__main__':
    unittest.main()

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,240评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,328评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,182评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,121评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,135评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,093评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,013评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,854评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,295评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,513评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,678评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,398评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,989评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,636评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,801评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,657评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,558评论 2 352

推荐阅读更多精彩内容