连载 | 机器学习基石 Lec10:Logistics Regression & 梯度下降

Tips:符号主要参照 Lec1,部分参照其他Lec~


上一节介绍了线性回归,线性回归是输出一个 score,可以用来判断用户的信用额度等……这一节将介绍另一种 回归 算法:logistic regression 。


Lec 10:Logistic Regression

上一节线性回归的Hypothesis是  h = wx,错误衡量是 squared error ,输出是正实数集,最终的解可以通过求 pseudo-inverse 得到,简单高效。这一节要讲的回归是什么样子的呢?

1、Logistic Hypothesis

问题描述:已有病人的一些数据,例如年龄、血压、体重等等,判断病人是否患有心脏病?!这是一个我们已经很熟悉的二元分类问题。

根据前面章节可知,理想的函数 f 也是一种目标分布,在这个问题中可以写成:

为什么这样写?因为在二元分类里面关注的是 0/1 err ,所以根据概率偏向判断 0 、1 。

再看一个类似的问题:类似上一个问题,只是此时不是关注是否有心脏病,而是关注得心脏病的几率、患病的可能性是多少?!这时候,就不是binary classification了,f 应该写成:

这种情景也称为 soft binary classification ,因为此时不是直接给出确定的 0 或 1,而是给出 是 0 的概率 或 是1的概率。这就是这节要探讨的问题!

要解决这个问题,理想中的数据是什么样的?如图,没有noise的数据。当然这是不可能得到的数据。

实际中能获得的数据并没有概率值,是和做 binary classification 的时候是一样的,y 都是 患心脏病 和 没患心脏病,但是最终想得到的 target function 不一样。

这节要探讨的问题就是:target function 是输出为 [0,1] 回归函数,已知的data和之前的二元分类一样,应该如何求呢?!

先设计一下Hypothesis:

已知输入x = (x1,x2,…,xd),前面都有计算score ,这里同样是这样,先计算一个加权分数:

这样做解释的通:分数高必然风险高,分数低风险也低,如何把score转化到 [0,1] 之间呢?

这时就要用到 logistic function :θ(s),hypothesis 就是:h(x)= θ(wT x),图形为:

进一步了解下logistic function,表达式为:

并且存在一些特殊取值,与预期一致:

则,logistic regression 的 h 为:

我们要想办法用这个h(x)去逼近目标函数 f(x)= P(y|x)。

2、Likelihood & Cross-Entropy Error

前面提到过,设计一个算法,要有Hypothesis,还要有一个衡量标准Ein,然后去最优化这个衡量标准。那么LogReg的Ein是怎么样的呢?!

先回忆并对比一下三个线性模型,共同的地方是都会计算 score:s = wT x (这三个图很重要,之间的关系也很重要,后面还会多次提到)

LogReg的err定义有一种特殊的方法:Likelihood

先给出f的另一种表达方式:

图1

现在看一组data:

考虑产生这组data的概率!(重点)

对于 f , 产生各个data的概率是:

根据图1的表达,用 f 替换 P :

由于我们希望 h 接近 f ,所以这里用 h “假装”(取代) f ,对于 h ,产生各个data的概率(可能性,likelihood)是:

现在想想,如果 h 接近 f,那么 h 产生这些data的 likelihood 也应该接近 f 产生这些data的概率;并且 f 产生这些 data的几率通常很大(恩,这是当然了,data就是从f那来的,只不过会存在一些noise干扰)。

所以!就得到一个特别的 error measure ,我们希望最大化 likelihood(h)

给出一个关于 h(x)= θ(wT x)的性质:对称性,即 1 - h(x)= h(-x),根据 θ 函数图形也可以看出,不解释。

这时, likelihood(h)可以写成:

根据对称性,可以进一步简化为:

P(x)用灰色是因为对于所有 h 来说 P(x)一样,所以 likelihood(h)正比于 h(yx)连乘:

所以现在就是要求解一个h使得likelihood(h)最大:

因为 h(x)= θ(wT x),所以可以写成:

取 ln 将连乘换成连加:

取负将最大化变为最小化,1/N 是常数,不影响,为了后续计算方便:

进一步变换表达式:

至此,将 err(w,x,y)= ln(1 + exp(-y w x))叫做 Cross-Entropy Error,取平均就得到了 Ein 。

3、Minimize Ein(w)& 迭代优化

得到了Ein(w),下面就是得到一个w使得Ein最小了!

这个Ein(w)是 连续的(continuous)、可微分的differentiable、二次可微(twice-differentiable)、凸函数(convex)。

和LinReg思路一样,找到“谷底”,让Ein的梯度等于0.。所以首先,求出Ein(w)的梯度。过程略,结果为:

让梯度等于0。什么时候等于0?θ(-y w x)= 0的时候。如果θ为0,则需要(y w x)正无限大,也代表 y 和 (w x)同号…这就意味着data需要是线性可分的。如果data不是线性可分的时候,很难得出结果。Ein的梯度是非线性的等式,需要一种新的方法求解:迭代优化。

求解思路可以从PLA中(参看Lec 2)获得启发,PLA是一步一步的修正(LinReg是一步登天)。PLA算法可以用一个等式表示出来:

即遇到错误时就去更新w,正确的话就是加上0。更新部分可以看成两部分:η 和 v。v是更新的方向(向量),η是在更新的方向上走多远。(这个思路后面会常常用到)

类似PLA,选择(η,v)终止条件一轮一轮的优化的方式叫做 iterative optimization 。(重要!!)

4、Gradient Descent

这一节将介绍在LogReg里面用到的一种 迭代优化 方法:梯度下降!(这个方法也很重要,不是只适用于这种情况)

进行迭代优化需要找出方向v,已知Ein是一个convex、continuous的曲线,如图:

要得到最小的Ein(w),可以想象成有一个小球在半山腰,要往谷底走……这里固定v是单位长度的,一次走多大步全由η决定。

如果用贪心的方法(即最快的滚下去),该向什么方向走呢?这里用 泰勒展开(Taylor expansion)将Ein(w)变成一个关于v的线性的式子:

当η够小的时候,上式成立。现在问题就变为:

现在就只剩下确定 v 。v和Ein两个向量相乘,怎么样最小?反向的时候最负。(可以这样想:如果一条直线的k>0,说明直线向右上升,应该向左走,反之,向右走),所以:

这时候,对于small η :

这种方法就是 Gradient Descent,这是一个简单通用的工具!

确定了方向v,η如何确定?什么样的η是好的?看图

从图上可以形象的看出,太大太小都不好,要适中。从第三张图可以看出,坡度大的时候可以跨大步,坡度小的时候跨小步,使用变化的η较好。所以有一种方法,就是取η与坡度大小正相关。梯度大小也可以反映出距离谷底的远近。

带入w的更新式子,可以约掉 || Ein(wt)|| ,注意:紫色的η和红色的η不是同一个η,新的更新式子为:

η 叫做 fixed learning rate 。η 小会学的慢,η大会学的快一点。

现在就可以给出完整的LogReg 算法了:

in practice,终止条件通常取 ≈ 0

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,377评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,390评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,967评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,344评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,441评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,492评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,497评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,274评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,732评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,008评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,184评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,837评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,520评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,156评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,407评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,056评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,074评论 2 352

推荐阅读更多精彩内容