数据中台常见问题


问题一:什么是用户行为数据,怎么采集用户行为数据?

用户无论在哪个客户端(iOS端、安卓端、小程序端、H5端)操作,用户产生的行为数据都分为两种:一种是浏览,一种是点击。这些隐性的行为数据,一般不会存储在业务线的数据库中,而是通过异步传输的方式传输并存储到数据采集服务器中。

为什么要花那么多的资源采集这些行为数据呢?因为这些数据对后期数据的挖掘应用是十分有用的。

举个例子,对于电商产品,如果没有行为数据的采集,我们是无法判断用户对某个商品的感兴趣程度,但是如果有了这些数据,我们就可以定义用户对商品的感兴趣程度,比如用户对某商品的1次点击,代表用户对该商品的兴趣度增加10分,而用户的3次点击代表他对这件商品非常有兴趣。

用户行为数据的采集有如下三种方式:

1、与第三方移动应用统计公司合作完成数据采集。
2、采用前后端埋点结合的方式完成数据采集。
3、采用可视化埋点与后端埋点结合的方式完成数据采集。


问题二:你是怎么管理公司的数据指标?

如何让指标定义清晰且没有歧义呢?解决这个问题的核心方法就是拆解——将一个数据指标拆解到不能再继续拆解为止,这样就能够最大化地保证大家的理解无误。假设我们要计算电商产品最近3个月的iOS客户端的下单金额。

首先这个指标属于电商产品业务板块,那么它的业务板块就可以定义为某电商业务线,下单金额在电商产品中属于交易模块这个指标的数据域就属于交易数据域。

下单金额是从订单中获得的,要基于订单的金额和下单的时间去统计下单金额,那么这个指标的维度就是订单。

原子指标是不可继续拆解的下单金额,由于加上了时间周期和修饰词(iOS客户端),那么这个指标就成为一个派生指标。

这样我们就把一个比较复杂的指标进行拆解和归类:



问题三:怎么识别虚荣指标?

比如常见的PV、UV、月活(即月活跃用户数)、总用户数、总商品数等指标都是虚荣指标,因为这些指标无法直接促进交易额增长,只起到对产品线监控的作用。

虚荣指标只能作为我们定的目标,并不能帮助我们增长,如果用户不下单,再多的UV、月活也没什么用。


问题四:数据库和数据仓库有什么区别?

数据库与数据仓库的用途是完全不同的。数据库和数据仓库虽然都是用来存储数据的,但数据库是用来存储业务数据的,而数据仓库是用来存储汇总后的报表数据的,以支撑公司的决策分析。


问题五:简单介绍一下数据仓库的分层机制?

业界比较通用的分层方式是将数据模型分为5层:
①ODS(Operate Data Store,操作数据层)
②DIM(Dictionary Data Layer,维度数据层)
③DWD(Data WarehouseDetail,明细数据层)
④DWS(Data Warehouse Service,汇总数据层)
⑤ADS(Application Data Store,数据应用层)。



题六:有无负责过标签平台?标签平台是怎么做的?

1、数据宽表功能。用来存储用户、商品等所有的指标。
2、标签体系功能。将各条产品线共用的标签和非共用的标签,按照统一的层级结构组织起来。
3、标签工厂功能。可以基于规则选择指标生成标签。
4、人群圈选功能。通过组合不同标签组合形成人群。该功能一般与推送、营销系统对接。


问题七:怎么评估一个拉新渠道值不值得做?

某个渠道是否值得投入是可以计算出来的。当我们在进行大范围推广前要进行小规模的灰度测试来证明渠道的可持续性。

比如地推人员拉来了一批新用户,就要看下接下来这批用户在平台上实际产生了多少交易额,如果周期内带来的交易额与周期内地推成本之比是大于1的,那么这个渠道就是可持续的。

如果两者之比小于1,一方面可以判断地推人员带来的用户质量是不合格的,另外一方面可以采取一些手段,看看能否促进地推人员的拉新质量。

如果采取了很多的手段,收入都无法覆盖成本,那就应该果断放弃这条拉新渠道,寻找其他更合适的拉新渠道。


问题八:你是怎么理解留存率的?

留存率分为访问留存率和购买留存率。访问留存率是指新注册用户次日、7日、14日、30日后再次访问我们的产品的数量百分比;购买留存率是指首次购买用户在接下来的7日、14日、30日再次购买我们的商品的数量百分比。


问题九:怎么理解访问时长、和跳出率?

访问时长:访问页面时长,即用户离开页面时间与用户进入页面时间的差值。

跳出率:访问页面一定时间内跳出的用户数与页面UV的比值。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,332评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,508评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,812评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,607评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,728评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,919评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,071评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,802评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,256评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,576评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,712评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,389评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,032评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,798评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,026评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,473评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,606评论 2 350

推荐阅读更多精彩内容