scrapy 笔记(1)

1.创建scrapy项目:

scrapy startproject my_scrapy_project

创建后的目录结构

    |-- my_scrapy_project
    |   |-- __init__.py
    |   |-- items.py
    |   |-- pipelines.py
    |   |-- settings.py
    |   `-- spiders
    |       `-- __init__.py
     `-- scrapy.cfg
  • scrapy.cfg: 项目的配置文件
  • my_scrapy_project/: 该项目的python模块。之后您将在此加入代码。
  • my_scrapy_project/items.py: 项目中的item文件.
  • my_scrapy_project/pipelines.py: 项目中的pipelines文件.
  • my_scrapy_project/settings.py: 项目的设置文件.
  • my_scrapy_project/spiders/: 放置spider代码的目录.

2.通过 xpath 提取数据

import scrapy
    class DmozSpider(scrapy.Spider):
        name = "dmoz"
        allowed_domains = ["dmoz.org"]
        start_urls = [
            "http://www.dmoz.org/Computers/Programming/Languages/Python/Books/",
            "http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/"
        ]
    def parse(self, response):
            filename = response.url.split("/")[-2]
            with open(filename, "wb") as f:
                for sel in response.xpath('//ul/li'):
                    title = sel.xpath('a/text()').extract()
                    link = sel.xpath('a/@href').extract()
                    desc = sel.xpath('text()').extract()
                    print title, link, desc
                    f.writelines(str(title))
                    f.writelines(str(link))
                    f.writelines(str(desc)+'\n')
  • 写出结果:
  • [u'Top'][u'/'][u'\r\n\r\n ']
  • [u'Computers'][u'/Computers/'][]
  • [u'Programming'][u'/Computers/Programming/'][]
  • [u'Languages'][u'/Computers/Programming/Languages/'][]
  • [u'Python'][u'/Computers/Programming/Languages/Python/'][]
  1. /html/head/title: 选择HTML文档中 <head> 标签内的 <title> 元素
  2. /html/head/title/text(): 选择上面提到的 <title> 元素的文字
  3. //td: 选择所有的 <td> 元素
  4. //div[@class="mine"]: 选择所有具有 class="mine" 属性的 div 元素
name: 用于区别Spider。 该名字必须是唯一的,您不可以为不同的Spider设定相同的名字。
start_urls: 包含了Spider在启动时进行爬取的url列表。 因此,第一个被获取到的页面将是其中之一。 后续的URL则从初始的URL获取到的数据中提取。
parse() 是spider的一个方法。 被调用时,每个初始URL完成下载后生成的 Response 对象将会作为唯一的参数传递给该函数。 该方法负责解析返回的数据(response data),提取数据(生成item)以及生成需要进一步处理的URL的 Request 对象。

3.使用item,json

首先定义item.py:

import scrapy
class DmozItem(scrapy.Item):
    title = scrapy.Field()
    link = scrapy.Field()
    desc = scrapy.Field()

然后修改parse方法:

 def parse(self, response):
    for sel in response.xpath('//ul/li'):
        item = DmozItem()
        item['title'] = sel.xpath('a/text()').extract()
        item['link'] = sel.xpath('a/@href').extract()
        item['desc'] = sel.xpath('text()').extract()
        yield item

最后,将所爬到的数据保存为json格式:

scrapy crawl dmoz -o items.json
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,904评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,581评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,527评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,463评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,546评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,572评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,582评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,330评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,776评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,087评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,257评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,923评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,571评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,192评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,436评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,145评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,127评论 2 352

推荐阅读更多精彩内容