智能医疗再突破:脊柱侧弯智能筛查新系统可达专家水平

姓名:李沂配 19021210904

转载自:https://mp.weixin.qq.com/s/Cmg8I1kyok61YsRtO76_jg

【嵌牛导读】:智能医疗旨在运用最先进的物联网技术来实现患者与医疗设备的互动,达到为医疗事业做贡献的目的。本为介绍了一种新型脊柱侧弯深度学习筛查技术的研发技术,可使用裸露的背部图像进行自动脊柱侧弯检查,具有减少脊柱侧弯筛查中不必要的转诊和成本的潜力,使患者免于放射危险。

【嵌牛鼻子】:智能医疗  算法   

【嵌牛提问】:智能加医疗已经成为非常火热的话题,你还能想到那些已经在各大医院应用了的智能+医疗呢?

【嵌牛正文】:

脊柱侧弯是青少年中最常见的脊柱疾病,全世界的患病率为0.5–5.2%。由于传统的筛查方法对于阳性的预测成功率较低,并需要一些不必要的转诊和放射成像。上海交通大学附属新华医院的杨军林教授发现裸露背部外观照能够在一定程度上反应脊柱侧弯程度,因此联合中山大学中山眼科中心的林浩添教授、西安电子科技大学的刘西洋教授着手于脊柱侧弯深度学习筛查技术的研发,项目于2018年获得国家重点研发计划项目(项目编号:2018YFC0116500)。其全球首创脊柱侧弯大规模人工智能筛查系统,准确率可达专家水平,这一成果于2019年10月25日在《自然》子刊《通讯·生物学》(Communications Biology)发表。

深度学习算法的应用具有减少脊柱侧弯筛查中不必要的转诊和成本的潜力。该团队开发并验证了深度学习算法,该算法可使用裸露的背部图像进行自动脊柱侧弯检查。该算法的准确性在检测脊柱侧弯,检测曲线≥20°的病例以及对二元分类和四分类的严重性分级方面优于人类专家。该方法可潜在地应用于常规脊柱侧弯筛查和无辐射暴露的治疗前定期随访。

论文链接: https://www.nature.com/articles/s42003-019-0635-8

论文成果

算法训练和内部验证

训练和内部验证数据集的人口统计信息、Faster-RCNN和Resnet的整体框图以及架构如图1所示,Faster-RCNN的平均定位性能为100%(平均插值)精度,标准偏差为0)。


图1 实现框图


图2 ROC曲线

这是内部验证数据集的ROC曲线以及二进制分类的准确性,特异性和敏感性。a DLA的ROC曲线和AUC,以识别严重性是否≥10°;b DLA的ROC曲线和AUC,以识别严重性是否≥20°;c四类分类(0–9°,10–19°,20–44°,≥45°)的DLA混淆矩阵。行和列代表真标签(从上到下<10°,10–19°,20–44°,≥45°)和预测标签(<10°,10–19°,20–44) °,从左至右≥45°)

外部验证

使用外部验证数据集进一步评估了DLA的诊断性能。专业的筛选人员需要约30分钟(19-40分钟)来评估400张背面照片(每张照片4.5 s),这比DLA所需的时间(每张照片1.5 s)长得多。结果显示,DLA与人类专家小组在检测脊柱侧弯,检测曲线≥20°的病例以及曲线严重程度分级方面存在显着差异。在P值分别为0.022,<0.001和<0.001。算法1和2的AUC分别为0.811(灵敏度为80.7%,特异性为58.0%)和0.929(灵敏度为84.0%,特异性为90.0%)。这两种算法的PPV分别为85.2%和89.4%。DLA在检测脊柱侧弯(算法1,75.0%;人,72.4%)和识别曲率≥20°且需要矫正或手术治疗的病例(算法2,87%;人, 81.9%)。算法4在四组之间进行区分的准确度为55.5%,可与四位人类专家中的最高准确度(56.8%)相媲美,并且优于平均水平(46.9%)。外部验证的结果如图所示。

图3 外部验证
图4 外部验证

热图

热图表明,有助于智能区分DLA的特征主要在肩cap骨和腰椎区域(图5)。热图显示的躯干不对称程度与患者的脊柱曲线有关。

图5 热图

该团队还开发了一个基于云的平台,该平台嵌入了受过训练的DLA,以便在Django Web框架中进行自动筛选。(详见论文内容)

评价

该团队首次创建了裸露背部外观照的大规模脊柱侧弯人工智能筛查系统,采用裸露背部外观照的筛查方式不仅高效便捷,还能使患者免于放射危险。其次,该团队创新地应用了目标检测网络和多角度评估网络为核心的医学人工智能算法框架,通过目标检测网络定位患者的裸露背部,并通过多个卷积神经网络满足不同筛查任务的需求,判断青少年是否患有脊柱侧弯,确定患者是否需要治疗,明确青少年脊柱弯曲程度所在区间。该方法在这三大方面都具有出色的表现。另外,这一人工智能脊柱侧弯筛查系统的开发,或将变革传统的人工筛查模式,这一系统不仅准确率达到人类专家水平,而且速度明显快于人工筛查的方式,大大提高筛查效率。对于人工智能+医疗来说,这项成果将是人类进步的一大步。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,723评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,003评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,512评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,825评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,874评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,841评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,812评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,582评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,033评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,309评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,450评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,158评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,789评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,409评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,609评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,440评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,357评论 2 352

推荐阅读更多精彩内容