(2)BitMap原理

经常能够看到有些大厂的面试题里有一些这样的题目:一个10G的文件,里面全部是自然数,一行一个,乱序排列,对其排序。在32位机器上面完成,内存限制为 2G。

首先来分析一下题目,10G的文件,只有2G内存,显然,不可能一次性把数据放入内存中直接排序。那么,还有什么其他办法呢?遍寻资料,可以发现大致有两种解决方案:

1、把大文件分成多个小文件,分别排序,到最后合并成一个文件(我暂时还没搞懂这个方法,所以不会描述,有兴趣的看官可以自己去查一下);

2、另外一种方法就是著名的bitmap算法了。引用一下《编程珠玑》的内容:

所谓的Bit-map就是用一个bit位来标记某个元素对应的Value, 而Key即是该元素。由于采用了Bit为单位来存储数据,因此在存储空间方面,可以大大节省。
如果说了这么多还没明白什么是Bit-map,那么我们来看一个具体的例子,假设我们要对0-7内的5个元素(4,7,2,5,3)排序(这里假设这些元素没有重复)。那么我们就可以采用Bit-map的方法来达到排序的目的。要表示8个数,我们就只需要8个Bit(1Bytes),首先我们开辟1Byte的空间,将这些空间的所有Bit位都置为0
然后遍历这5个元素,首先第一个元素是4,那么就把4对应的位置为1(可以这样操作 p+(i/8)|(0×01<<(i%8)) 当然了这里的操作涉及到Big-ending和Little-ending的情况,这里默认为Big-ending),因为是从零开始的,所以要把第五位置为1。
然后再处理第二个元素7,将第八位置为1,,接着再处理第三个元素,一直到最后处理完所有的元素,将相应的位置为1。
然后我们现在遍历一遍Bit区域,将该位是一的位的编号输出(2,3,4,5,7),这样就达到了排序的目的。
其实就是把计数排序用的统计数组的每个单位缩小成bit级别的布尔数组

这就是Bit-map的基本思想。Bit-map算法利用这种思想处理大量数据的排序、查询以及去重。

片头提出的问题,这里自然是要用bitmap算法来解决了,下面先来解释一下算法(本期算法用java实现)。

1、

32位机器上的自然数一共有4294967296个,如果用一个bit来存放一个整数,1代表存在,0代表不存在,那么把全部自然数存储在内存只要4294967296 / (8 * 1024 * 1024) = 512MB(8bit = 一个字节),而这些自然数存放在文件中,一行一个数字,需要16G的容量。可见,bitmap算法节约了非常多的空间。

不过在java中,应该没有bit这种数据结构,最小的是byte,byte占8bit,那么我们可以用byte代表8个连续的数字,不过因为byte的范围是127 ~ -128,最高位是符号位,所以可以变通一下,前7位代表8n ~ 8n + 7的数字,8n + 7这个数可以用符号来区分,即>0即含有8n + 7,<0即不含8n + 7(这里其实不一定要用byte来做,用short,int,long来做都一样的,因为我找到第一篇是用byte,所以就先入为主了)。

talk is cheap,show me the code. -- Linus Torvalds

2、

package main.io;

public class BitMap {
    public byte[] bitArr;
    private static final byte mask = 3;
    private static final int maxNum = (1 << mask) - 1;
    private long count = 0;

    BitMap() {
        bitArr = new byte[1 << (Integer.SIZE - mask)];
    }
}

这里的mask代表的是移位数,n >>3 等价于 Math.floor(n / 8), (1 << 3) - 1 = 7 = bin 111(这两个地方先记着,下面会解释)。

3、

设置bit的方法,网上能够找到的代码多数是这样实现的:

bitArr[num >> mask] |= (1 << (num & maxNum));

但是这个方法会有一个逻辑漏洞,就是(1 << (8n + 7) & 7) = 128,128就超出了byte的范围变成-128了,我就是被这个坑了,还好写了一个php的版本来对比debug。。。o(╥﹏╥)o

这里要区分原来的数值是否为负数,还有设置的数是否为8n + 7。
我对于位运算不太熟,所以就把负数按位取反进行 | 运算再转回来。

设置bit的方法:

    public void setBit(int num) {
        var val = bitArr[num >> mask];
        var bit = num & maxNum;
        if (val >= 0 && bit == maxNum) {
            bitArr[num >> mask] = (byte) ~val;
        } else if (val < 0 && bit != maxNum) {
            bitArr[num >> mask] = (byte) ~(~val | (1 << bit));
        } else if (val >= 0 && bit != maxNum) {
            bitArr[num >> mask] |= (1 << bit);
        }
    }

4、

只要明白了上面的方法,下面的查询和移除的方法也就十分简单了。

    public byte getBit(int num) {
        var val = bitArr[num >> mask];
        var bit = num & maxNum;
        if (bit == maxNum) {
            return bitArr[num >> mask] < 0 ? (byte) 1 : (byte) 0;
        } else if (val < 0 && bit != maxNum) {
            return (byte) (~bitArr[num >> mask] & (1 << (bit)));
        } else {
            return (byte) (bitArr[num >> mask] & (1 << (bit)));
        }
    }
    
    public void delBit(int num) {
        var val = bitArr[num >> mask];
        var bit = num & maxNum;
        if (bit == maxNum) {
            bitArr[num >> mask] = (byte) ~val;
        } else if (val < 0 && bit != maxNum) {
            bitArr[num >> mask] = (byte) ~(~bitArr[num >> mask] ^ (1 << (bit)));
        } else {
            bitArr[num >> mask] = (byte) (bitArr[num >> mask] ^ (1 << (bit)));
        }
    }

最后还有一个统计bitmap存在数字数量的方法:

    public long countDistinctNum() {
        var length = bitArr.length;
        for (int i = 0; i < length; ++i) {
            if (bitArr[i] >= 0) {
                count += Integer.bitCount(bitArr[i]);
            }else {
                count += Integer.bitCount(~bitArr[i]) + 1;
            }
        }
        return count;
    }

明白了bitmap的算法原理,接下来就要实战一下,下期来讲一下利用bitmap给海量数据排序的方法。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,080评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,422评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,630评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,554评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,662评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,856评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,014评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,752评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,212评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,541评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,687评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,347评论 4 331
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,973评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,777评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,006评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,406评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,576评论 2 349

推荐阅读更多精彩内容