10 mins to pandas

# S!T!A!R!T```python%matplotlib inlineimport numpy as npimport pandas as pdimport matplotlib.pyplot as plt```## 1.define a Dataframe data```pythondates = pd.date_range('20170129', periods = 5, freq = 'd')df = pd.DataFrame(np.random.randn(5,4), columns = list('ABCD'), index = dates)``````pythondf```

.dataframe thead tr:only-child th {

text-align: right;

}

.dataframe thead th {

text-align: left;

}

.dataframe tbody tr th {

vertical-align: top;

}

ABCD

2017-01-29-0.8767950.6257040.8394741.239243

2017-01-300.3514250.6191040.6901520.890323

2017-01-310.4845342.188402-0.258478-0.833300

2017-02-011.492153-1.739632-1.868941-0.013322

2017-02-020.6747790.317034-0.379203-0.076168

```pythondf.plot(kind = 'barh')```![png](output_5_1.png)## 2.having data types in 'df'```pythondf.dtypes```    A    float64    B    float64    C    float64    D    float64    dtype: object## 3. Choose indexs&cloumns&values```pythonprint('-_'*33)print('The index of df is :\n{0}'.format(df.index))print('-_'*33)print('The values of df is :\n{0}'.format(df.values))print('-_'*33)print('The columns of df is :\n{0}'.format(df.columns))print('-_'*33)print(df.describe())print('-_'*33)```    -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_    The index of df is :    DatetimeIndex(['2017-01-29', '2017-01-30', '2017-01-31', '2017-02-01',                  '2017-02-02'],                  dtype='datetime64[ns]', freq='D')    -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_    The values of df is :    [[-0.87679455  0.62570401  0.8394737  1.23924262]    [ 0.35142547  0.61910446  0.69015155  0.89032261]    [ 0.48453389  2.18840161 -0.2584778  -0.83329982]    [ 1.49215272 -1.739632  -1.86894142 -0.01332174]    [ 0.67477899  0.31703409 -0.37920271 -0.07616798]]    -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_    The columns of df is :    Index(['A', 'B', 'C', 'D'], dtype='object')    -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_                  A        B        C        D    count  5.000000  5.000000  5.000000  5.000000    mean  0.425219  0.402122 -0.195399  0.241355    std    0.852178  1.403764  1.083244  0.827270    min  -0.876795 -1.739632 -1.868941 -0.833300    25%    0.351425  0.317034 -0.379203 -0.076168    50%    0.484534  0.619104 -0.258478 -0.013322    75%    0.674779  0.625704  0.690152  0.890323    max    1.492153  2.188402  0.839474  1.239243    -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_## 4.Transposing your data```pythonprint(df.T)```      2017-01-29  2017-01-30  2017-01-31  2017-02-01  2017-02-02    A  -0.876795    0.351425    0.484534    1.492153    0.674779    B    0.625704    0.619104    2.188402  -1.739632    0.317034    C    0.839474    0.690152  -0.258478  -1.868941  -0.379203    D    1.239243    0.890323  -0.833300  -0.013322  -0.076168## 5.Sort```pythondf```

.dataframe thead tr:only-child th {

text-align: right;

}

.dataframe thead th {

text-align: left;

}

.dataframe tbody tr th {

vertical-align: top;

}

ABCD

2017-01-29-0.8767950.6257040.8394741.239243

2017-01-300.3514250.6191040.6901520.890323

2017-01-310.4845342.188402-0.258478-0.833300

2017-02-011.492153-1.739632-1.868941-0.013322

2017-02-020.6747790.317034-0.379203-0.076168

```pythonprint('-_'*33)print(df.sort_index(axis = 0, ascending = False))print('-_'*33)print(df.sort_index(axis = 1, ascending = False))print('-_'*33)print(df.sort_values(axis = 0, ascending = True , by = 'A'))print('-_'*33)```    -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_                      A        B        C        D    2017-02-02  0.674779  0.317034 -0.379203 -0.076168    2017-02-01  1.492153 -1.739632 -1.868941 -0.013322    2017-01-31  0.484534  2.188402 -0.258478 -0.833300    2017-01-30  0.351425  0.619104  0.690152  0.890323    2017-01-29 -0.876795  0.625704  0.839474  1.239243    -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_                      D        C        B        A    2017-01-29  1.239243  0.839474  0.625704 -0.876795    2017-01-30  0.890323  0.690152  0.619104  0.351425    2017-01-31 -0.833300 -0.258478  2.188402  0.484534    2017-02-01 -0.013322 -1.868941 -1.739632  1.492153    2017-02-02 -0.076168 -0.379203  0.317034  0.674779    -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_                      A        B        C        D    2017-01-29 -0.876795  0.625704  0.839474  1.239243    2017-01-30  0.351425  0.619104  0.690152  0.890323    2017-01-31  0.484534  2.188402 -0.258478 -0.833300    2017-02-02  0.674779  0.317034 -0.379203 -0.076168    2017-02-01  1.492153 -1.739632 -1.868941 -0.013322    -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_## 6.Choose data### 6.1.Choose columns by single label```pythondf```

.dataframe thead tr:only-child th {

text-align: right;

}

.dataframe thead th {

text-align: left;

}

.dataframe tbody tr th {

vertical-align: top;

}

ABCD

2017-01-29-0.8767950.6257040.8394741.239243

2017-01-300.3514250.6191040.6901520.890323

2017-01-310.4845342.188402-0.258478-0.833300

2017-02-011.492153-1.739632-1.868941-0.013322

2017-02-020.6747790.317034-0.379203-0.076168

```pythonprint('-_'*33)print(df.A)print('-_'*33)print(df['B'])print('-_'*33)```    -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_    2017-01-29  -0.876795    2017-01-30    0.351425    2017-01-31    0.484534    2017-02-01    1.492153    2017-02-02    0.674779    Freq: D, Name: A, dtype: float64    -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_    2017-01-29    0.625704    2017-01-30    0.619104    2017-01-31    2.188402    2017-02-01  -1.739632    2017-02-02    0.317034    Freq: D, Name: B, dtype: float64    -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_### 6.2.Choose rows by slice via'[ : ]'```pythondf```

.dataframe thead tr:only-child th {

text-align: right;

}

.dataframe thead th {

text-align: left;

}

.dataframe tbody tr th {

vertical-align: top;

}

ABCD

2017-01-29-0.8767950.6257040.8394741.239243

2017-01-300.3514250.6191040.6901520.890323

2017-01-310.4845342.188402-0.258478-0.833300

2017-02-011.492153-1.739632-1.868941-0.013322

2017-02-020.6747790.317034-0.379203-0.076168

```python#not include the second numberdf[ :3]```

.dataframe thead tr:only-child th {

text-align: right;

}

.dataframe thead th {

text-align: left;

}

.dataframe tbody tr th {

vertical-align: top;

}

ABCD

2017-01-29-0.8767950.6257040.8394741.239243

2017-01-300.3514250.6191040.6901520.890323

2017-01-310.4845342.188402-0.258478-0.833300

### 6.3. Choose rows by index name via'[:]'```python# include the second labledf['20170129': '2017-1-31']```

.dataframe thead tr:only-child th {

text-align: right;

}

.dataframe thead th {

text-align: left;

}

.dataframe tbody tr th {

vertical-align: top;

}

ABCD

2017-01-29-0.8767950.6257040.8394741.239243

2017-01-300.3514250.6191040.6901520.890323

2017-01-310.4845342.188402-0.258478-0.833300

### 6.4. Choose complex sections using '.loc( )'```pythondf```

.dataframe thead tr:only-child th {

text-align: right;

}

.dataframe thead th {

text-align: left;

}

.dataframe tbody tr th {

vertical-align: top;

}

ABCD

2017-01-29-0.8767950.6257040.8394741.239243

2017-01-300.3514250.6191040.6901520.890323

2017-01-310.4845342.188402-0.258478-0.833300

2017-02-011.492153-1.739632-1.868941-0.013322

2017-02-020.6747790.317034-0.379203-0.076168

```pythonprint(df.loc[dates[0]])print('-_'*33)print(df.loc['20170201'])print('-_'*33)print(df.loc[dates[0]:dates[len(df)-1], list('AB')])print('-_'*33)print(df.loc['20170129': '20170202', ['A', 'C', 'D']])print('-_'*33)print(df.loc[:, list('CBA')])print('-_'*33)print(df.loc[dates[0], 'A'])print('-_'*33)print(df.loc[dates[0], ['A']])print('-_'*33)##A' can not be a listprint(df.at[dates[0], 'A'])```    A  -0.876795    B    0.625704    C    0.839474    D    1.239243    Name: 2017-01-29 00:00:00, dtype: float64    -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_    A    1.492153    B  -1.739632    C  -1.868941    D  -0.013322    Name: 2017-02-01 00:00:00, dtype: float64    -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_                      A        B    2017-01-29 -0.876795  0.625704    2017-01-30  0.351425  0.619104    2017-01-31  0.484534  2.188402    2017-02-01  1.492153 -1.739632    2017-02-02  0.674779  0.317034    -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_                      A        C        D    2017-01-29 -0.876795  0.839474  1.239243    2017-01-30  0.351425  0.690152  0.890323    2017-01-31  0.484534 -0.258478 -0.833300    2017-02-01  1.492153 -1.868941 -0.013322    2017-02-02  0.674779 -0.379203 -0.076168    -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_                      C        B        A    2017-01-29  0.839474  0.625704 -0.876795    2017-01-30  0.690152  0.619104  0.351425    2017-01-31 -0.258478  2.188402  0.484534    2017-02-01 -1.868941 -1.739632  1.492153    2017-02-02 -0.379203  0.317034  0.674779    -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_    -0.876794550096    -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_    A  -0.876795    Name: 2017-01-29 00:00:00, dtype: float64    -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_    -0.876794550096### 6.5. Choose complex sections using '.lioc( )'```pythondf```

.dataframe thead tr:only-child th {

text-align: right;

}

.dataframe thead th {

text-align: left;

}

.dataframe tbody tr th {

vertical-align: top;

}

ABCD

2017-01-29-0.8767950.6257040.8394741.239243

2017-01-300.3514250.6191040.6901520.890323

2017-01-310.4845342.188402-0.258478-0.833300

2017-02-011.492153-1.739632-1.868941-0.013322

2017-02-020.6747790.317034-0.379203-0.076168

```pythonprint('-_'*33)#single elementprint(df.iloc[0,0])print('-_'*33)#complex sectionsprint(df.iloc[:3,2:])print('-_'*33)#single rowprint(df.iloc[0])print('-_'*33)#single columnprint(df.iloc[:,0])print('-_'*33)```    -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_    -0.876794550096    -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_                      C        D    2017-01-29  0.839474  1.239243    2017-01-30  0.690152  0.890323    2017-01-31 -0.258478 -0.833300    -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_    A  -0.876795    B    0.625704    C    0.839474    D    1.239243    Name: 2017-01-29 00:00:00, dtype: float64    -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_    2017-01-29  -0.876795    2017-01-30    0.351425    2017-01-31    0.484534    2017-02-01    1.492153    2017-02-02    0.674779    Freq: D, Name: A, dtype: float64    -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_### 7. Boolean indexing```python#element in column 'A' > 0, return the DataFramedf[df.A > 0]```

.dataframe thead tr:only-child th {

text-align: right;

}

.dataframe thead th {

text-align: left;

}

.dataframe tbody tr th {

vertical-align: top;

}

ABCD

2017-01-300.3514250.6191040.6901520.890323

2017-01-310.4845342.188402-0.258478-0.833300

2017-02-011.492153-1.739632-1.868941-0.013322

2017-02-020.6747790.317034-0.379203-0.076168

```python#all element in 'df' which <=0 is np.nandf[df > 0]```

.dataframe thead tr:only-child th {

text-align: right;

}

.dataframe thead th {

text-align: left;

}

.dataframe tbody tr th {

vertical-align: top;

}

ABCD

2017-01-29NaN0.6257040.8394741.239243

2017-01-300.3514250.6191040.6901520.890323

2017-01-310.4845342.188402NaNNaN

2017-02-011.492153NaNNaNNaN

2017-02-020.6747790.317034NaNNaN

```pythondf2=df.copy()df2['E'] = ['fuck', 'shit', ] * 2 + ['suck']df2[df2.E.isin(['fuck', 'suck'])]```

.dataframe thead tr:only-child th {

text-align: right;

}

.dataframe thead th {

text-align: left;

}

.dataframe tbody tr th {

vertical-align: top;

}

ABCDE

2017-01-29-0.8767950.6257040.8394741.239243fuck

2017-01-310.4845342.188402-0.258478-0.833300fuck

2017-02-020.6747790.317034-0.379203-0.076168suck

### 8.Missing Data```pythondf3 = df[df > 0]df3```

.dataframe thead tr:only-child th {

text-align: right;

}

.dataframe thead th {

text-align: left;

}

.dataframe tbody tr th {

vertical-align: top;

}

ABCD

2017-01-29NaN0.6257040.8394741.239243

2017-01-300.3514250.6191040.6901520.890323

2017-01-310.4845342.188402NaNNaN

2017-02-011.492153NaNNaNNaN

2017-02-020.6747790.317034NaNNaN

```pythondf3.dropna()```

.dataframe thead tr:only-child th {

text-align: right;

}

.dataframe thead th {

text-align: left;

}

.dataframe tbody tr th {

vertical-align: top;

}

ABCD

2017-01-300.3514250.6191040.6901520.890323

```pythondf3.fillna(value = 'Missing')```

.dataframe thead tr:only-child th {

text-align: right;

}

.dataframe thead th {

text-align: left;

}

.dataframe tbody tr th {

vertical-align: top;

}

ABCD

2017-01-29Missing0.6257040.8394741.23924

2017-01-300.3514250.6191040.6901520.890323

2017-01-310.4845342.1884MissingMissing

2017-02-011.49215MissingMissingMissing

2017-02-020.6747790.317034MissingMissing

```pythondf4 = pd.isnull(df3)df4```

.dataframe thead tr:only-child th {

text-align: right;

}

.dataframe thead th {

text-align: left;

}

.dataframe tbody tr th {

vertical-align: top;

}

ABCD

2017-01-29TrueFalseFalseFalse

2017-01-30FalseFalseFalseFalse

2017-01-31FalseFalseTrueTrue

2017-02-01FalseTrueTrueTrue

2017-02-02FalseFalseTrueTrue

### 9. Merge```pythona = df[  : 2]b = df[2 : 4]c = df[4 : 5]pieces = [a, b, c]pd.concat(pieces)```

.dataframe thead tr:only-child th {

text-align: right;

}

.dataframe thead th {

text-align: left;

}

.dataframe tbody tr th {

vertical-align: top;

}

ABCD

2017-01-29-0.8767950.6257040.8394741.239243

2017-01-300.3514250.6191040.6901520.890323

2017-01-310.4845342.188402-0.258478-0.833300

2017-02-011.492153-1.739632-1.868941-0.013322

2017-02-020.6747790.317034-0.379203-0.076168

### 10. Time Series### 10.1. define time series based 'df'```pythontime = pd.date_range('20170129', periods = 1000, freq = 'd')col = list('ABCDEFG')df_time = pd.DataFrame(np.random.randn(len(time), len(col)), index = time, columns = col)df_time.head(5)```

.dataframe thead tr:only-child th {

text-align: right;

}

.dataframe thead th {

text-align: left;

}

.dataframe tbody tr th {

vertical-align: top;

}

ABCDEFG

2017-01-29-2.442170-1.423526-0.2833060.4749680.2284170.8108171.918797

2017-01-300.3414900.611065-0.6841250.9758580.595433-1.2319040.027245

2017-01-31-0.448969-0.416562-1.026428-1.529416-0.5672462.305233-0.186806

2017-02-010.3858290.0555172.3483670.419194-0.3857280.0490750.613855

2017-02-02-0.2629490.3337900.750670-0.7366430.0635610.6028150.328664

### 10.2. resample 'df' by month```pythondf_time2 = df_time.resample('m').mean()df_time2.head()```

.dataframe thead tr:only-child th {

text-align: right;

}

.dataframe thead th {

text-align: left;

}

.dataframe tbody tr th {

vertical-align: top;

}

ABCDEFG

2017-01-31-0.849883-0.409675-0.664620-0.0261960.0855350.6280490.586412

2017-02-28-0.0904390.0590900.069942-0.049585-0.075990-0.1410150.258787

2017-03-310.133955-0.0674840.157919-0.0252380.2037280.217022-0.109552

2017-04-30-0.1271820.1696820.065305-0.2698410.2872390.1400860.193535

2017-05-31-0.0336770.088312-0.284405-0.1335220.114316-0.551639-0.158488

```pythondf_time3 = df_time2.tz_localize('utc')df_time3.head()```

.dataframe thead tr:only-child th {

text-align: right;

}

.dataframe thead th {

text-align: left;

}

.dataframe tbody tr th {

vertical-align: top;

}

ABCDEFG

2017-01-31 00:00:00+00:00-0.849883-0.409675-0.664620-0.0261960.0855350.6280490.586412

2017-02-28 00:00:00+00:00-0.0904390.0590900.069942-0.049585-0.075990-0.1410150.258787

2017-03-31 00:00:00+00:000.133955-0.0674840.157919-0.0252380.2037280.217022-0.109552

2017-04-30 00:00:00+00:00-0.1271820.1696820.065305-0.2698410.2872390.1400860.193535

2017-05-31 00:00:00+00:00-0.0336770.088312-0.284405-0.1335220.114316-0.551639-0.158488

```pythondf_time3.tz_convert('US/Eastern').head()```

.dataframe thead tr:only-child th {

text-align: right;

}

.dataframe thead th {

text-align: left;

}

.dataframe tbody tr th {

vertical-align: top;

}

ABCDEFG

2017-01-30 19:00:00-05:00-0.849883-0.409675-0.664620-0.0261960.0855350.6280490.586412

2017-02-27 19:00:00-05:00-0.0904390.0590900.069942-0.049585-0.075990-0.1410150.258787

2017-03-30 20:00:00-04:000.133955-0.0674840.157919-0.0252380.2037280.217022-0.109552

2017-04-29 20:00:00-04:00-0.1271820.1696820.065305-0.2698410.2872390.1400860.193535

2017-05-30 20:00:00-04:00-0.0336770.088312-0.284405-0.1335220.114316-0.551639-0.158488

### 11. Plotting```pythondf.plot()```![png](output_49_1.png)

### 12. Data I/O

```python

df_time.to_csv('DataFrame_time_data.csv')

```

```python

df_time.to_excel('DataFrame_time_data.xlsx', sheet_name = 'data_1')

```

```python

df_time.to_html('DataFrame_time_data.html')

```

```python

df_time.to_json('DataFrame_time_data.txt')

```

```python

```

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,222评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,455评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,720评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,568评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,696评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,879评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,028评论 3 409
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,773评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,220评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,550评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,697评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,360评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,002评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,782评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,010评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,433评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,587评论 2 350

推荐阅读更多精彩内容