opencv二值化函数 threshold(src_gray,dst,threshold_value,max_BINARY_value,threshold_type),threshold(gray, binary, 0, 255, THRESH_BINARY | THRESH_OTSU);这里二值化,即图像像素值变成0或255,THRESH_OTSU是确定阈值分割点,这个是库函数确定的,下面介绍原理
对于图像I(x,y),将要确定的分割阈值计做T,所以灰度点分成俩个区域,ω0(所有低于T的)和ω1(高于T的),其对应区域的平均灰度μ0和μ1,图像的总平均灰度记为μ,类间方差记为g。图像的大小为M×N,图像中像素的灰度值小于阈值T的像素个数记作N0,像素灰度大于阈值T的像素个数记作N1,则有:
ω1=N1/ M×N (2)
N0+N1=M×N (3)
ω0+ω1=1 (4)
μ=ω0*μ0+ω1*μ1 (5)
g=ω0(μ0-μ)^2+ω1(μ1-μ)^2 (6) 将式(5)代入式(6),得到等价公式:
g=ω0ω1(μ0-μ1)^2 (7) 这就是类间方差
采用遍历的方法得到使类间方差g最大的阈值T,即为所求。
int MyAutoFocusDll::otsuThreshold(IplImage *frame)
{
const int GrayScale = 256;
int width = frame->width;
int height = frame->height;
int pixelCount[GrayScale];
float pixelPro[GrayScale];
int i, j, pixelSum = width * height, threshold = 0;
uchar* data = (uchar*)frame->imageData; //指向像素数据的指针
for (i = 0; i < GrayScale; i++)
{
pixelCount[i] = 0;
pixelPro[i] = 0;
}
//统计灰度级中每个像素在整幅图像中的个数
for (i = 0; i < height; i++)
{
for (j = 0; j < width; j++)
{
pixelCount[(int)data[i * width + j]]++; //将像素值作为计数数组的下标
}
}
//计算每个像素在整幅图像中的比例
float maxPro = 0.0;
int kk = 0;
for (i = 0; i < GrayScale; i++)
{
pixelPro[i] = (float)pixelCount[i] / pixelSum;
if (pixelPro[i] > maxPro)
{
maxPro = pixelPro[i];
kk = i;
}
}
//遍历灰度级[0,255]
float w0, w1, u0tmp, u1tmp, u0, u1, u, deltaTmp, deltaMax = 0;
for (i = 0; i < GrayScale; i++) // i作为阈值
{
w0 = w1 = u0tmp = u1tmp = u0 = u1 = u = deltaTmp = 0;
for (j = 0; j < GrayScale; j++)
{
if (j <= i) //背景部分
{
w0 += pixelPro[j];
u0tmp += j * pixelPro[j];
}
else //前景部分
{
w1 += pixelPro[j];
u1tmp += j * pixelPro[j];
}
}
u0 = u0tmp / w0;
u1 = u1tmp / w1;
u = u0tmp + u1tmp;
deltaTmp = w0 * pow((u0 - u), 2) + w1 * pow((u1 - u), 2);
if (deltaTmp > deltaMax)
{
deltaMax = deltaTmp;
threshold = i;
}
}
return threshold;
}