多线程设计模式:第三篇 - 生产者-消费者模式和读写锁模式

一,生产者-消费者模式

        生产者-消费者模式是比较常见的一种模式,当生产者和消费者都只有一个的时候,这种模式也被称为 Pipe模式,即管道模式。

        生产者-消费者模式中通过 Channel 即通道来互相传递数据,那么数据在通道中以什么样的顺序传递,这里在设计时需要考虑,一般的实现包括如下三种方式:

  • 队列——顺序传递
  • 栈——倒序传递
  • 优先队列——根据权重/优先权来传递

        Channel 通道可以通过 juc 包中的 BlockingQueue 来实现,这样省去了自己实现 Queue 时的 wait/notify 操作。一个简单的生产者-消费者模型举例:在该例子中,生产者是负责生成蛋糕并放到桌子上,消费者就负责从桌子上拿蛋糕吃,这里桌子作为数据传输的通道,其代码实现如下:

/**
 * @author koma <komazhang@foxmail.com>
 * @date 2018-10-18
 */
public class Table {
    private final Queue<String> queue;
    private final int count;

    public Table(int count) {
        this.count = count;
        queue = new LinkedList<>();
    }

    public synchronized void put(String cake) throws InterruptedException {
        System.out.println(Thread.currentThread().getName()+" puts "+cake);
        while (queue.size() >= count) {
            wait();
        }
        queue.offer(cake);
        notifyAll();
    }

    public synchronized String take() throws InterruptedException {
        while (queue.size() <= 0) {
            wait();
        }
        String cake = queue.poll();
        notifyAll();
        System.out.println(Thread.currentThread().getName()+" takes "+cake);
        return cake;
    }
}

        生产者,消费者以及启动类代码如下:

/**
 * @author koma <komazhang@foxmail.com>
 * @date 2018-10-18
 */
public class Main {
    public static void main(String[] args) {
        Table table = new Table(3);
        new MakerThread("MakerThread-1", table, 314151).start();
        new MakerThread("MakerThread-2", table, 523242).start();
        new MakerThread("MakerThread-3", table, 716151).start();
        try {
            Thread.sleep(1000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        new EaterThread("EaterThread-1", table, 625341).start();
        new EaterThread("EaterThread-2", table, 525349).start();
        new EaterThread("EaterThread-3", table, 225841).start();
    }
}

public class EaterThread extends Thread {
    private final Random random;
    private final Table table;

    public EaterThread(String name, Table table, long seed) {
        super(name);
        this.table = table;
        this.random = new Random(seed);
    }

    @Override
    public void run() {
        try {
            while (true) {
                String cake = table.take();
                Thread.sleep(random.nextInt(1000));
            }
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }
}

public class MakerThread extends Thread {
    private final Random random;
    private final Table table;
    private static int id = 0;

    public MakerThread(String name, Table table, long seed) {
        super(name);
        this.table = table;
        this.random = new Random(seed);
    }

    @Override
    public void run() {
        try {
            while (true) {
                Thread.sleep(random.nextInt(1000));
                String cake = "[ Cake No."+nextId()+" by "+getName()+" ]";
                table.put(cake);
            }
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }

    private static synchronized int nextId() {
        return id++;
    }
}

        如果 Table 类选择使用 juc 包中的 BlockingQueue 来实现,则非常简单。常见的 BlockingQueue 包括基于链表实现的 LinkedBlockingQueue,基于数组实现的 ArrayBlockingQueue,以及带有优先级的 PriorityBlockingQueue。这里我们使用基于链表的 BlockingQueue,改写之后代码如下:

/**
 * @author koma <komazhang@foxmail.com>
 * @date 2018-10-18
 */
public class Table {
    private final LinkedBlockingQueue<String> queue;
    private final int count;

    public Table(int count) {
        this.count = count;
        queue = new LinkedBlockingQueue<>();
    }

    public synchronized void put(String cake) throws InterruptedException {
        System.out.println(Thread.currentThread().getName()+" puts "+cake);
        queue.put(cake);
    }

    public synchronized String take() throws InterruptedException {
        System.out.println(Thread.currentThread().getName()+" takes "+cake);
        return queue.take();
    }
}

二,读写锁模式

        读写锁模式是一种把读操作和写操作分开来考虑的模式,在这种模式下一个实例包括两类锁:读锁和写锁。写锁可由多个线程同时获取,而读锁只能由一个线程同时获取。而且规定在执行写操作时不能进行读写,在执行读操作时不能进行写。

        一般来说,执行互斥处理会降低程序性能,但是如果把读写操作分开来考虑则可以提高程序性能。

        下面的示例代码,使用读写锁模式来实现对 Data 类的读写操作,其中最关键的是 ReadWriteLock 类,该类使用到了不可变模式。

/**
 * @author koma <komazhang@foxmail.com>
 * @date 2018-10-18
 */
public class Main {
    public static void main(String[] args) {
        Data data = new Data(10);
        new ReaderThread(data).start();
        new ReaderThread(data).start();
        new ReaderThread(data).start();
        new ReaderThread(data).start();
        new ReaderThread(data).start();
        new ReaderThread(data).start();
        new WriterThread(data, "ABCDEFGHIJKLMNOPQRSTUVWXYZ").start();
        new WriterThread(data, "abcdefghijklmnopqrstuvwxyz").start();
    }
}

public class Data {
    private final char[] buffer;
    private final ReadWriteLock lock = new ReadWriteLock();

    public Data(int size) {
        this.buffer = new char[size];
        for (int i = 0; i < size; i++) {
            buffer[i] = '*';
        }
    }

    public char[] read() throws InterruptedException {
        try {
            lock.readLock();
            return doRead();
        } finally {
            lock.readUnlock();
        }
    }

    public void write(char c) throws InterruptedException {
        try {
            lock.writeLock();
            doWrite(c);
        } finally {
            lock.writeUnlock();
        }
    }

    private void doWrite(char c) {
        for (int i = 0; i < buffer.length; i++) {
            buffer[i] = c;
            slowly();
        }
    }

    private char[] doRead() {
        char[] newBuf = new char[buffer.length];
        for (int i = 0; i < buffer.length; i++) {
            newBuf[i] = buffer[i];
        }
        slowly();
        return newBuf;
    }

    private void slowly() {
        try {
            Thread.sleep(50);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }
}

public class ReaderThread extends Thread {
    private final Data data;

    public ReaderThread(Data data) {
        this.data = data;
    }

    @Override
    public void run() {
        try {
            while (true) {
                char[] readBuf = data.read();
                System.out.println(Thread.currentThread().getName()+" reads "+String.valueOf(readBuf));
            }
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }
}

public class WriterThread extends Thread {
    private final static Random random = new Random();
    private final Data data;
    private final String filler;
    private int index = 0;

    public WriterThread(Data data, String filler) {
        this.data = data;
        this.filler = filler;
    }

    @Override
    public void run() {
        try {
            while (true) {
                char c = nextChar();
                data.write(c);
                Thread.sleep(random.nextInt(3000));
            }
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }

    private char nextChar() {
        char c = filler.charAt(index);
        index++;
        if (index >= filler.length()) {
            index = 0;
        }
        return c;
    }
}

public final class ReadWriteLock {
    private int readingReaders = 0; //正在执行读操作的线程数
    private int waitingWriters = 0; //等待写锁的线程数
    private int writingWriters = 0; //正在执行写操作的线程数
    private boolean preferWriter = true; //是否写入优先

    public synchronized void readLock() throws InterruptedException {
        while (writingWriters > 0 || (preferWriter && waitingWriters > 0)) {
            wait();
        }

        readingReaders++;
    }

    public synchronized void readUnlock() {
        readingReaders--;
        preferWriter = true;
        notifyAll();
    }

    public synchronized void writeLock() throws InterruptedException {
        waitingWriters++;
        try {
            while (readingReaders > 0 || writingWriters > 0) {
                wait();
            }
        } finally {
            waitingWriters--;
        }
        writingWriters++;
    }

    public synchronized void writeUnlock() {
        writingWriters--;
        preferWriter = false;
        notifyAll();
    }
}

        读写锁模式利用了读操作不修改实例状态的特性,这样多个读操作线程之间就不存在冲突,因此不用做同步处理,从而提供程序性能。但是性能的提升不是绝对的,需要实际测量,同时也需要考虑以下两个场景要求:

  • 读取操作耗时的操作,当读取操作很简单时,单线程模式相比而言更加简单高效
  • 读取频率比写入频率高的操作,当写入频率较高时,写入操作频繁的打断读取操作,读写锁模式的优越性降低

1,锁的含义

        synchronized 是用于获取实例的锁。Java 中每个对象的实例都持有一个锁,但同一个锁同时只能由一个线程持有。这种结构是 Java 规范规定的,JVM 也是这么实现的。这种锁称为物理锁

        在读写锁模式中,这里的锁与 synchronized 获取的锁是不一样的,这并不是 Java 规范规定的锁,而是由开发人员自己实现的,这种锁称为逻辑锁

        ReadWriteLock 类中有读锁和写锁,但这是逻辑锁,这两个逻辑锁共用同一个由 synchronized 获取的 ReadWriteLock 类实例的物理锁。这就是为什么我们在 ReadWriteLock 类中的加锁、解锁方法上都声明了 synchronized 关键字的缘故,因为它们最终要共用同一把物理锁,而同一把物理锁同一时间只能由一个线程持有,这种规定保证了逻辑锁的实现。

2,Java 中的读写锁

        在 juc 包中提供了实现了读写锁模式的 ReadWriteLock 接口和 ReentrantReadWriteLock 实现类。通过 ReentrantReadWriteLock 改写之后的 Data 类代码如下:

/**
 * @author koma <komazhang@foxmail.com>
 * @date 2018-10-18
 */
public class Data {
    private final char[] buffer;
    private final ReentrantReadWriteLock lock = new ReentrantReadWriteLock();
    private final Lock readLock = lock.readLock();
    private final Lock writeLock = lock.writeLock();

    public Data(int size) {
        this.buffer = new char[size];
        for (int i = 0; i < size; i++) {
            buffer[i] = '*';
        }
    }

    public char[] read() throws InterruptedException {
        readLock.lock();
        try {
            Thread.sleep(10000);
            return doRead();
        } finally {
            readLock.unlock();
        }
    }

    public void write(char c) throws InterruptedException {
        writeLock.lock();
        try {
            doWrite(c);
        } finally {
            writeLock.unlock();
        }
    }

    //其它方法不变
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,172评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,346评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,788评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,299评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,409评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,467评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,476评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,262评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,699评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,994评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,167评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,827评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,499评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,149评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,387评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,028评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,055评论 2 352

推荐阅读更多精彩内容

  • 进程和线程 进程 所有运行中的任务通常对应一个进程,当一个程序进入内存运行时,即变成一个进程.进程是处于运行过程中...
    胜浩_ae28阅读 5,096评论 0 23
  • 本文是我自己在秋招复习时的读书笔记,整理的知识点,也是为了防止忘记,尊重劳动成果,转载注明出处哦!如果你也喜欢,那...
    波波波先森阅读 11,247评论 4 56
  • Java-Review-Note——4.多线程 标签: JavaStudy PS:本来是分开三篇的,后来想想还是整...
    coder_pig阅读 1,643评论 2 17
  • 开发中遇到美工出的图标是外发光,确实好看,可直接切外发光的图标,效果没有设计图上好,那么只能Android自己实现...
    Boyko阅读 5,429评论 6 4
  • 曾经听说过,当我踏上火车,故乡再无春秋,只有夏冬。 曾经记得又是谁说过,一个人第一次独自踏上火车,去往远方,他必定...
    46f267122143阅读 1,978评论 1 1