ICCV 2025 超分辨率(super-resolution)方向上接收论文总结

ICCV(IEEE International Conference on Computer Vision,国际计算机视觉会议)是计算机视觉领域最顶级的国际会议之一,每两年举办一次。ICCV 2025,将于2025年10月19日至23日在美国夏威夷檀香山举行。今年大会共收到了 11239 份有效投稿,程序委员会推荐录用 2699 篇论文,最终录用率为24%。

现将超分辨率方向上接收的论文汇总如下,遗漏之处还请大家斧正。

图像超分

扩散模型/流模型

  1. ZFusion: Efficient Deep Compositional Zero-shot Learning for Blind Image Super-Resolution with Generative Diffusion Prior
  • Paper: [待补充]

  • Code: [待补充]

  • Keywords: Generative Diffusion Prior, Zero-shot Learning, Blind Super-Resolution

  • Features: 基于生成扩散先验的零样本盲超分辨率方法

  • Team: Alireza Esmaeilzehi · Hossein Zaredar · Yapeng Tian · Laleh Seyyed-Kalantari (York University)

  1. Diffusion Transformer meets Multi-level Wavelet Spectrum for Single Image Super-Resolution
  • Paper: [待补充]

  • Code: [待补充]

  • Keywords: Diffusion Transformer, Wavelet Spectrum, Image Super-Resolution

  • Features: 结合扩散 Transformer 和多尺度小波谱的单图像超分辨率

  • Team: Peng Du · Hui Li · Han Xu等

  1. Fast Image Super-Resolution via Consistency Rectified Flow
  • Paper: [待补充]

  • Code: [待补充]

  • Keywords: 基于一致性矫正流的快速图像超分辨率,改进的一致性学习策略,快速-慢速调度策略,HR正则化

  • Features: 单步高质量超分辨率

  • Team: Xiaowei Hu, Renjing Pei, Pheng-Ann Heng等

  1. Consistency Trajectory Matching for One-Step Generative Super-Resolution
  1. PatchScaler: An Efficient Patch-Independent Diffusion Model for Image Super-Resolution
  • Paper: https://arxiv.org/abs/2405.17158

  • Code: https://github.com/yongliuy/PatchScaler

  • Keywords: Patch-Independent, Diffusion Model, Image Super-Resolution

  • Features: 基于补丁的独立扩散模型,通过补丁自适应分组采样和纹理提示机制加速推理

  • Team: National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, Xi'an Jiaotong University, ByteDance Inc, Nanjing University of Science and Technology

  1. Exploiting Diffusion Prior for Task-driven Image Restoration
  1. DiT4SR: Taming Diffusion Transformer for Real-World Image Super-Resolution
  1. Adversarial Purification via Super-Resolution and Diffusion
  • Paper: [待补充]

  • Code: [待补充]

  • Keywords: 对抗纯化,超分辨率,扩散模型

  • Team: Mincheol Park · Cheonjun Park · Seungseop Lim · Mijin Koo · Hyunwuk Lee · Won Woo Ro · Suhyun Kim

  1. Timestep-Aware Diffusion Model for Extreme Image Rescaling
  • Paper: https://arxiv.org/abs/2408.09151

  • Code: https://github.com/wwangcece/TADM

  • Keywords: Timestep-Aware, Diffusion Model, Extreme Image Rescaling

  • Features: 在预训练自编码器的潜在空间中操作,利用预训练文本到图像扩散模型的自然图像先验,时间步感知扩散模型,首次将时间感知扩散模型与潜空间重采样机制结合,突破 16× 甚至 32× 极端倍率下的重建瓶颈

  • Team: 武汉大学 - Ce Wang, Zhenyu Hu, Wanjie Sun, Zhenzhong Chen

任意尺度超分

  1. IM-LUT: Interpolation Mixing Look-Up Tables for Image Super-Resolution
  1. Generalized and Efficient 2D Gaussian Splatting for Arbitrary-scale Super-Resolution

轻量级模型

  1. Emulating Self-attention with Convolution for Efficient Image Super-Resolution
  1. LightBSR: Towards Lightweight Blind Super-Resolution via Discriminative Implicit Degradation Representation Learning
  1. Outlier-Aware Post-Training Quantization for Image Super-Resolution
  • Paper: [待补充]

  • Code: [待补充]

  • Keywords: 后训练量化,异常值感知

  • Features: 离群值感知的超分辨率后训练量化方法

  • Team: Hailing Wang · Jianglin Lu · Yitian Zhang · Yun Fu

盲超分 / 真实世界 / 参考

  1. Fine-structure Preserved Real-world Image Super-resolution via Transfer VAE Training
  1. Not All Degradations Are Equal: A Targeted Feature Denoising Framework for Generalizable Image Super-Resolution
  • Paper: https://arxiv.org/abs/2509.14841

  • Code: [待补充]

  • Keywords: 通用图像超分辨率,目标特征去噪框架

  • Team: 东京大学,香港理工大学,吉林大学

  1. Perceive, Understand and Restore: Real-World Image Super-Resolution with Autoregressive Multimodal Generative Models
  • Paper: https://arxiv.org/abs/2503.11073

  • Code: https://github.com/nonwhy/PURE

  • Keywords: 自回归多模态生成模型,真实世界图像超分辨率

  • Features: 首个自适应预训练自回归多模态模型的Real-ISR框架,基于Lumina-mGPT的指令微调

  • Team: Zhang Lei 团队 (香港理工大学,OPPO研究院)

  1. Reference-based Super-Resolution via Image-based Retrieval-Augmented Generation Diffusion
  • Paper: [待补充]

  • Code: [待补充]

  • Keywords: 基于参考的超分辨率,检索增强生成扩散

  • Team: Byeonghun Lee · Hyunmin Cho · Honggyu Choi · Soo Min Kang · ILJUN AHN · Kyong Hwan Jin

视频超分

  1. DiffVSR: Revealing an Effective Recipe for Taming Robust Video Super-Resolution Against Complex Degradations
  1. VSRM: A Robust Mamba-Based Framework for Video Super-Resolution
  • Paper: https://arxiv.org/abs/2506.22762

  • Code: [待补充]

  • Keywords: Mamba状态空间模型,视频超分辨率

  • Features: 空间到时间Mamba块,时间到空间Mamba块,可变形交叉Mamba对齐模块

  • Team: 韩国科学技术院,KAIST

  1. Blind Video Super-Resolution based on Implicit Kernels
  1. MedVSR: Medical Video Super-Resolution with Cross State-Space Propagation
  • Paper: [待补充]

  • Code: [待补充]

  • Keywords: 医学视频超分辨率,跨状态空间传播

  • Features: 基于跨状态空间传播的医学视频超分辨率

  • Team: Xinyu Liu · Guolei Sun · Cheng Wang · Yixuan Yuan · Ender Konukoglu

  1. LDIP: Long Distance Information Propagation for Video Super-Resolution
  • Paper: [待补充]

  • Code: [待补充]

  • Keywords: 长距离信息传播,视频超分辨率

  • Features: 灵活融合模块,可选的高分辨率参考图像信息同化,支持任意缩放因子

  • Team: Michael Bernasconi · Abdelaziz Djelouah · Yang Zhang · Markus Gross · Christopher Schroers

  1. STAR: Spatial-Temporal Augmentation with Text-to-Video Models for Real-World Video Super-Resolution

其他场景

3D超分

  1. Bridging Diffusion Models and 3D Representations: A 3D Consistent Super-Resolution Framework
  • Paper: https://arxiv.org/abs/2508.04090

  • Code: [待补充]

  • Keywords: 3D一致性超分辨率框架,3D高斯点绘

  • Features: 利用现成的2D扩散超分辨率模型,无需额外微调

  • Team: 马里兰大学帕克分校,卡内基梅隆大学,伊利诺伊大学厄巴纳-香槟分校

  1. Lightweight Gradient-Aware Upscaling of 3D Gaussian Splatting Images
  • Paper: https://arxiv.org/abs/2503.14171

  • Code: https://keksboter.github.io/upscale3dgs/

  • Keywords: 3D Gaussian Splatting(3DGS),图像上采样

  • Features: 针对轻量级GPU设计,利用高斯函数的解析图像梯度进行基于梯度的双三次样条插值

  • Team: Technical University of Munich (TUM) - Simon Niedermayr, Christoph Neuhauser, Rüdiger Westermann

  1. DuCos: Duality Constrained Depth Super-Resolution via Foundation Model

光场超分

  1. Rethinking the Upsampling Process in Light Field Super-Resolution with Spatial-Epipolar Implicit Image Function
  • Paper: [待补充]

  • Code: [待补充]

  • Keywords: 光场超分辨率,空间-极线隐式图像函数

  • Features: 基于空间极线隐式图像函数的光场超分辨率上采样过程重新思考

  • Team: Ruixuan Cong · Yu Wang · Mingyuan Zhao · Da Yang · Rongshan Chen · Hao Sheng

遥感/高光谱超分

  1. Hipandas: Hyperspectral Image Joint Denoising and Super-Resolution by Image Fusion with the Panchromatic Image
  • Paper: https://arxiv.org/abs/2412.04201

  • Code: [待补充]

  • Keywords: 高光谱图像联合去噪和超分辨率,全色图像融合

  • Team: Shuang Xu · Zixiang Zhao · Haowen Bai · Chang Yu · Jiangjun Peng · Xiangyong Cao · Deyu Meng

  1. NeurOp-Diff: Continuous Remote Sensing Image Super-Resolution via Neural Operator Diffusion
  • Paper: [待补充]

  • Code: [待补充]

  • Keywords: 神经算子扩散,连续遥感图像超分辨率

  • Features: 基于神经算子扩散的遥感图像连续超分辨率

  • Team: Zihao Xu · Yuzhi Tang · Bowen Xu · Qingquan Li

文本/场景超分

  1. StyleSRN: Scene Text Image Super-Resolution with Text Style Embedding

偏振图像超分

  1. Benchmarking Burst Super-Resolution for Polarization Images: Noise Dataset and Analysis

自适应光学超分

  1. Super Resolved Imaging with Adaptive Optics

图像恢复/生成

以下论文标题不含"超分辨率"或"super-resolution",但与图像恢复相关,可以作为参考和借鉴:

  1. Decouple to Reconstruct: High Quality UHD Restoration via Active Feature Disentanglement and Reversible Fusion
  • Paper: https://arxiv.org/abs/2503.12764

  • Code: [待补充]

  • Keywords: 超高清图像恢复,主动特征解耦和可逆融合

  • Features: 控制微分解耦VAE(CD²-VAE),分层对比解耦学习(Hi-CDL),正交门控投影模块(OrthoGate)

  • Team: 中国科学技术大学,上海人工智能实验室

  1. Reverse Convolution and Its Applications to Image Restoration
  1. Turbo2K: Towards Ultra-Efficient and High-Quality 2K Video Synthesis
  1. <mark style="box-sizing: border-box; background: rgb(255, 255, 0); color: rgb(0, 0, 0);">UniRes: Universal Image Restoration for Complex Degradations</mark>
  • Paper: https://arxiv.org/abs/2506.05599

  • Code: [待补充]

  • Keywords: 基于扩散的通用图像恢复框架,处理复杂退化(多种退化类型的任意混合),端到端方式,结合多个专业模型在扩散采样步骤中

  • Features: 灵活性强,可调整保真度-质量权衡

  • Team: 谷歌,约翰霍普金斯大学

  1. EAMamba: Efficient All-Around Vision State Space Model for Image Restoration
  1. Devil is in the Uniformity: Exploring Diverse Learners within Transformer for Image Restoration
  1. MP-HSIR: A Multi-Prompt Framework for Universal Hyperspectral Image Restoration

总结

从本届接收的论文来看,ICCV 2025 超分辨率领域呈现以下几个明显趋势:

  1. 扩散模型持续繁荣:基于扩散模型的方法仍然是主流,包括UniRes、ZFusion、PatchScaler等,这些方法在处理复杂退化和保持图像质量方面表现出色。

  2. 任意尺度超分受到关注:IM-LUT、Generalized 2D Gaussian Splatting等方法在任意尺度超分辨率方面取得突破,支持连续倍率放大。

  3. 效率优化成为重点:轻量级模型(Emulating Self-attention with Convolution、EAMamba、LightBSR)和高效推理方法受到关注,旨在解决实际应用中的部署问题。

  4. 多模态和基础模型融合:越来越多的方法结合多模态信息和基础模型,如DuCos利用基础模型作为提示,STAR集成文本到视频模型。

  5. 新型架构探索:Mamba状态空间模型(VSRM、EAMamba)、反向卷积(Reverse Convolution)等新架构在超分辨率领域展现出潜力。

  6. 应用场景多样化:除了传统图像超分外,视频超分、3D超分、光场超分、遥感/高光谱超分、文本/场景超分等多种应用场景受到关注。

  7. 真实世界应用导向:针对真实世界退化、医学影像、遥感图像等实际应用场景的研究显著增加。

总体而言,ICCV 2025 超分辨率研究在保持高质量重建的同时,更加注重实用性、效率和多样化应用,为该领域的进一步发展奠定了坚实基础。

参考资料

  1. ICCV 2025 Official Website

  2. ICCV 2025 Accepted Papers

©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容