TCP UDP 分段 IP分片

udp ip学习博客

3次握手4次挥手


链路层 MTU 最大传输单元 1500 MISS最大分段

TCP 层     数据  tcp +Data

TCP+MISS+id2

D1<MISS

ip +TCP+D1+id2

tcp+D1+id2

tcp一段一段(D1)传 传成功了在传第二段(D2)  数据编号id1

包活计时器  2h    2h后没有对方确认收到  每75秒之后会发送探测包 发送10次 还是没有回应 则失败


UDP(用户数据报协议)-短信

只管发送,不确认对方是否接收到

将数据及源和目的封装成数据包中,不需要建立连接

每个数据包的大小限制在64K之内

因为无需连接,因此是不可靠协议

不需要建立连接,速度快

应用场景: 视频直播,游戏LOL

TCP(传输控制协议)

建立连接,形成传输数据的通道

在连接中进行大数据传输(数据大小不收限制)

通过三次握手完成连接,是可靠协议,安全送达

必须建立连接,效率会稍低



数据链路层 不能大于1500个字节 数据太多必须分片

我们知道,当应用层程序之间进行网络数据传输时,在发送端,数据会从应用层沿着协议栈向下传输,通过TCP/IP层,然后经由链路层发送出去,而在接收

端,则是相反的顺序,数据经由链路层接收,然后沿着协议栈向上传输,通过IP/TCP层,最后由应用层程序进行读取。

而在IP层往链路层传输数据的时候,往往会做一个分片的操作,对于大多数链路层来讲,它都有一个最大传输单元(MTU),表示能够发送数据量的大小,它是由硬件决定的。比如以太网的MTU为1500字节。当IP层传输给链路层的数据量大于其MTU时,那么IP层就会将数据拆分为小于其链路层MTU的数据片,再传输给链路层进行发送 ,但是对于不同的传输层协议(TCP/UDP)来说,在IP层上,需不需要进行分片是不同的

TCP层的分片

对于TCP来说,它是尽量避免分片的,为什么?因为如果在IP层进行分片了话,如果其中的某片的数据丢失了,对于保证可靠性的TCP协议来说,会增大重传,数据包的机率,而且只能重传整个TCP分组(进行IP分片前的数据包),因为TCP层是不知道IP层进行分片的细节的,也不关心。

当TCP层进行TCP分组的重传后,还会直接影响到应用层程序的性能,特别是在应用程序使用阻塞IO进行读写的时候。要理解这点,首先我们要知道当

应用层程序往TCPIP协议栈写数据的时候都做了些什么事。

在应用层程序中,我们可以有自己的发送缓冲区,而TCP层本身也有自己的一个发送缓冲区,默认情况下一般是8k大小,可以通过SO_SNDBUF设置或读取。 当我们在应用层往TCP层写数据的时候,实际上是将应用层发送缓冲区的数据拷贝到TCP层的发送缓冲区中。当TCP层的发送缓冲区满或者网络空闲时,TCP层就 会将其缓冲区中的数据通过IP层传到链路层的发送队列中。如果TCP层的发送缓冲区满而且应用层的数据没有写完时,内核会将write系统调用挂起,并不返回给应用层程序,直到应用层的数据全部拷贝到TCP层的缓冲区中。而由于TCP层要保证数据包的可靠性,即数据包丢失时要进行重传,那么TCP层在往网络发送TCP分组后,需要在其发送缓冲区中暂时保存发出的TCP分组数据用于后续可能的重传。

在这样的前提下,如果IP对来自TCP层的数据进行了分片, 那么就有可能使得应用层程序一直在write系统调用处挂起等待,引起性能的下降。

TCP层如何避免IP层的分片

首先,我们先回顾下TCP建立连接的3次握手:

在这3次握手中,除了确认SYN分节外,通信的两端还进行协商了一个值,MSS,这个值用来告诉对方,能够发送的TCP分节的大小。这个值一般是取其链路层的MTU大小减去TCP头部大小和IP头部的大小。MSS=MTU-TCP头部大小-IP头部大小. MTU的值可以通过询问链路层得知。当两端确认好MSS后进行通信,当TCP层往IP层传输数据时,如果TCP层缓冲区的大小大于MSS,那么TCP层都会将其发送缓冲区中的数据切分成MSS大小的分组进行传输,由于MSS是通过MTU减去TCP头部大小和IP头部的大小计算得出的,MSS肯定比MTU小,那么到IP层的时候就可以避免IP层的分片。

UDP层的分片

如果我们采用的是UDP协议而不是TCP协议呢?在IP层会不会进行分片?由于UDP是不需要保证可靠性的,那么它就不会保存发送的数据包,TCP之所以保存发送的数据包是因为要进行重传。所以UDP本身是没有像TCP一样的发送缓冲区的。这就导致了对UDP进行write系统调用的时候,实际上应用层的数据是直接传输到IP层,由于IP层本身也不会有缓冲区,数据就会直接写到链路层的输出队列中。在这种情况下,IP层会不会对来自UDP的数据进行分片呢?这个取决于UDP数据报的大小。如果UDP数据报的大小大于链路层的MTU,那么IP层就会直接进行分片,然后在发送到链路层的输出队列中,反之,则不会进行分片,直接加上IP头部发送到链路层的输出队列中。

TCP/UDP实验

看完了理论,让我们实践一把,看是否与以上的理论相符。

对于TCP来说,它是尽量避免分片的。假设我们这里要发送给TCP层的数据大小为2748个字节,这个大小是明显大于链路层的发送数据的大小的,在这个情况

下我们来看,对于来自TCP层的数据,IP会不会进行分片。

从第一张图看来,应用层的2748个字节在TCP层就进行了分段,分层了两个TCP段,一个1460字节,一个1288字节。那么到IP层的时候,自然就不会在进行分片了。

从第二张图片看出,在这两个TCP分段中,在序号3处,IP的头部字段(Don ' t Fragment)被设置了,用于告诉IP层不要对该数据进行分片。

而对于MSS大小的协商,我们可以从下面这张图片看到,下面的图片是TCP CLIENT发出的第一个SYN TCP分段:

对于UDP来说,假设我们要发送的一个UDP数据包大小为1600个字节,那么在实际上通过UDP/IP分发出去的时候,会不会进行分片呢? 看如下的图片: 

从上面的图片可以看出,我们发送的数据包的大小为1600字节(序号1处),在UDP层,长度为1608字节(序号2处),这里的8个字节是UDP的头部字段的长度, 到了IP层(序号3处),我们可以清楚的看到IP对UDP数据包进行了分片,一个大小为1480字节,一个为128字节.


区别:

1.IP分片产生的原因是网络层的MTU;TCP分段产生原因是MSS.

2.IP分片由网络层完成,也在网络层进行重组;TCP分段是在传输层完成,并在传输层进行重组.   //透明性

3.对于以太网,MSS为1460字节,而MUT往往会大于MSS.

 故采用TCP协议进行数据传输,是不会造成IP分片的。若数据过大,只会在传输层进行数据分段,到了IP层就不用分片。

而我们常提到的IP分片是由于UDP传输协议造成的,因为UDP传输协议并未限定传输数据报的大小。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,172评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,346评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,788评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,299评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,409评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,467评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,476评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,262评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,699评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,994评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,167评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,827评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,499评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,149评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,387评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,028评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,055评论 2 352

推荐阅读更多精彩内容

  • 1.这篇文章不是本人原创的,只是个人为了对这部分知识做一个整理和系统的输出而编辑成的,在此郑重地向本文所引用文章的...
    SOMCENT阅读 13,053评论 6 174
  • 11.1 引言 UDP是一个简单的面向数据报的运输层协议:进程的每个输出操作都正好产生一个UDP数据报,并组装成一...
    张芳涛阅读 2,802评论 1 6
  • # 图解TCP/IP 标签(空格分隔): 2018招聘 --- ##第1章 网络基础知识 ### ### 1.1 ...
    Kai_a3da阅读 1,437评论 0 2
  • 个人认为,Goodboy1881先生的TCP /IP 协议详解学习博客系列博客是一部非常精彩的学习笔记,这虽然只是...
    贰零壹柒_fc10阅读 5,051评论 0 8
  • 本文主要通过整理网络上的资料,整理出的关于TCP方面的简单理论知识。作为Java程序员虽然更多的时候我们都是直接调...
    tomas家的小拨浪鼓阅读 5,537评论 1 100