Android Handler、Looper、MessageQueue 工作原理详解

前言

阅读本文,可以了解如下问题:
1、Handler如何处理和分发消息?
2、Looper如何避免一直轮询?
3、通过sendMessageAtTime()发送的Message,是如何控制时间的?
4、 同步分割栏的含义和使用?

概述

发送者
消息队列
循环处理
线程1 ... 线程2 ...

1. Hander、Looper、MessageQueue三者的关系

MessageQueue是Looper构造方法中创建
private Looper(boolean quitAllowed) {
    mQueue = new MessageQueue(quitAllowed);
    mThread = Thread.currentThread();
}

Hander构造方法

public Handler(Callback callback, boolean async) {
    .....
    mLooper = Looper.myLooper();
    if (mLooper == null) {
        throw new RuntimeException(
            "Can't create handler inside thread " + Thread.currentThread()
                    + " that has not called Looper.prepare()");
    }
    mQueue = mLooper.mQueue;
    mCallback = callback;
    mAsynchronous = async;
}

2. 运行机制

创建Looper对象
private static void prepare(boolean quitAllowed) {
    if (sThreadLocal.get() != null) {
        throw new RuntimeException("Only one Looper may be created per thread");
    }
    sThreadLocal.set(new Looper(quitAllowed));
}

如果要实现Handler消息机制,必须要有Looper对象,我们在应用主线程可以通过handler发送message,是因为在应用进程创建的初始,ActivityThread.java的main()中已经通过调用Looper.java 的 prepareMainLooper()方法创立了主线程的Looper对象。

Looper对象创建后,还没有真正运行起来,需要调用其loop()方法,让它“跑”起来:

public static void loop() {
    final Looper me = myLooper();
    ......
    final MessageQueue queue = me.mQueue;
    ......
   // for 循环一直在运行
    for (;;) {
        // 如果消息队列没有msg,就会阻塞在下面这句,直到消息返回
        Message msg = queue.next(); // might block
        if (msg == null) {
            // No message indicates that the message queue is quitting.
            return;
        }
        ......
        // 从消息队列获得消息,分发给对应的handler,这里target就是handler对象
        msg.target.dispatchMessage(msg);
        .......
    }
}

这个for循环就是消息处理机制的“循环泵”,不断的从消息队列获取消息,然后分发给对应的handler处理,后面会详细介绍queue.next()方法的实现原理。

public void dispatchMessage(@NonNull Message msg) {
    if (msg.callback != null) {
        handleCallback(msg);
    } else {
        if (mCallback != null) {
            if (mCallback.handleMessage(msg)) {
                return;
            }
        }
        handleMessage(msg);
    }
}

向消息队列MessageQueue发送message

sendMessage() 最终会调用如下方法:

Handler.java
public boolean sendMessageAtTime(Message msg, long uptimeMillis) 
{
    MessageQueue queue = mQueue;
    if (queue == null) {
        RuntimeException e = new RuntimeException(
                this + " sendMessageAtTime() called with no mQueue");
        Log.w("Looper", e.getMessage(), e);
        return false;
    }
    return enqueueMessage(queue, msg, uptimeMillis);
}
private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
    msg.target = this;
    if (mAsynchronous) {
        msg.setAsynchronous(true);//异步消息,其实没有什么多大的作用,后面介绍同步分割栏再说
    }
    return queue.enqueueMessage(msg, uptimeMillis);
}

把消息插入到消息队列中:

MessageQueue.java
boolean enqueueMessage(Message msg, long when) {
    synchronized (this) {
        ......
        msg.when = when;
        Message p = mMessages;
        boolean needWake;
       // 1.如果正在插入的消息的执行时间比消息队列的消息头还早,就把它插入头部
        if (p == null || when == 0 || when < p.when) {
            // New head, wake up the event queue if blocked.
            msg.next = p;
            mMessages = msg;
            needWake = mBlocked;
        } else {
            needWake = mBlocked && p.target == null && msg.isAsynchronous();
            Message prev;
            // 2.否则,遍历消息队列,找到合适的位置插入
            // 这里可以看出,消息队列中的消息都是按照时间排序的,最早执行的在列表头部
            for (;;) {
                prev = p;
                p = p.next;
                if (p == null || when < p.when) {
                    break;
                }
                if (needWake && p.isAsynchronous()) {
                    needWake = false;
                }
            }
            msg.next = p; // invariant: p == prev.next
            prev.next = msg;
        }

        // We can assume mPtr != 0 because mQuitting is false.
        if (needWake) {
            nativeWake(mPtr); // 重要:msg插入队列后,如果needwake为true,就会唤醒loop()方法中的阻塞返回
        }
    }
    return true;
}

Looper循环处理消息

现在终于到了消息分发机制的核心代码loop(),主要来看看其中queue.next()的实现

public static void loop() {
    final Looper me = myLooper();
    ......
    final MessageQueue queue = me.mQueue;
    ......
   // for 循环一直在运行
    for (;;) {
        // 如果消息队列没有msg,就会阻塞在下面这句,直到消息返回
        Message msg = queue.next(); // might block
        if (msg == null) {
            // No message indicates that the message queue is quitting.
            return;
        }
        ......
        // 从消息队列获得消息,分发给对应的handler,这里target就是handler对象
        msg.target.dispatchMessage(msg);
        .......
    }
}
Message next() {
    //nextPollTimeoutMillis代表需要阻塞的时间,这个时间需要根据message的执行时间计算得来的,下面的for循环就是在计算这个时间
    int nextPollTimeoutMillis = 0;
    for (;;) {
        //此方法会阻塞,开始nextPollTimeoutMillis为0,直接返回
        nativePollOnce(ptr, nextPollTimeoutMillis);
        synchronized (this) {
            final long now = SystemClock.uptimeMillis();
            Message prevMsg = null;
            Message msg = mMessages;
            // 遇到同步分割栏,绕过正常msg,寻找后面异步msg
            // 同步分割栏后面再介绍
            if (msg != null && msg.target == null) {
                do {
                    prevMsg = msg;
                    msg = msg.next;
                } while (msg != null && !msg.isAsynchronous());
            }

            if (msg != null) {
                if (now < msg.when) {
                    // 当前时间还未到msg的执行时间,获得需要等待的时间
                    nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                } else {
                    // 否则直接返回msg
                    mBlocked = false;
                    if (prevMsg != null) {
                        prevMsg.next = msg.next;
                    } else {
                        mMessages = msg.next;
                    }
                    msg.next = null;
                    msg.markInUse();
                    return msg;
                }
            } else {
                // "-1"表示阻塞,nativePollOnce(ptr, -1)方法就会等待有新的msg到来
                nextPollTimeoutMillis = -1;
            }
           ......
    }
}

来看看nativePollOnce()如何实现的,这是一个native方法,jni方法:
frameworks/base/core/jni/android_os_MessageQueue.cpp

static void android_os_MessageQueue_nativePollOnce(JNIEnv* env, jobject obj,
        jlong ptr, jint timeoutMillis) {
    NativeMessageQueue* nativeMessageQueue = reinterpret_cast<NativeMessageQueue*>(ptr);
    nativeMessageQueue->pollOnce(env, obj, timeoutMillis);
}

void NativeMessageQueue::pollOnce(JNIEnv* env, jobject pollObj, int timeoutMillis) {
    mPollEnv = env;
    mPollObj = pollObj;
    //主要看这个pollOnce()方法
    mLooper->pollOnce(timeoutMillis);
    mPollObj = NULL;
    mPollEnv = NULL;

}

system/core/libutils/Looper.cpp

int Looper::pollOnce(int timeoutMillis, int* outFd, int* outEvents, void** outData) {
    int result = 0;
    ......
     result = pollInner(timeoutMillis); // 调用pollInner方法
}

int Looper::pollInner(int timeoutMillis) {
    // Adjust the timeout based on when the next message is due.
    if (timeoutMillis != 0 && mNextMessageUptime != LLONG_MAX) {
        nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
        int messageTimeoutMillis = toMillisecondTimeoutDelay(now, mNextMessageUptime);
        if (messageTimeoutMillis >= 0
                && (timeoutMillis < 0 || messageTimeoutMillis < timeoutMillis)) {
            timeoutMillis = messageTimeoutMillis;
        }

    // Poll.
    int result = POLL_WAKE;
    struct epoll_event eventItems[EPOLL_MAX_EVENTS];
    // 省略其它代码,直接看epoll_wait(),这个方法就是监听fd是否有写入,如果有写入,就立即返回,否则等待timeoutMillis后再返回
   // 关于epoll_wait()的介绍,可以自行百度
    int eventCount = epoll_wait(mEpollFd.get(), eventItems, EPOLL_MAX_EVENTS, timeoutMillis);
    ......
    return result;
}

再来看看nativeWake()方法的实现:

void NativeMessageQueue::wake() {
    mLooper->wake();
}

void Looper::wake() {
    uint64_t inc = 1;
    //唤醒的方式就是向mWakeEventFd写入“1”
    ssize_t nWrite = TEMP_FAILURE_RETRY(write(mWakeEventFd.get(), &inc, sizeof(uint64_t)));
    ......
}

3. 什么是同步分割栏

当设置了同步屏障之后,next() 将会忽略所有的同步消息,返回异步消息。
也就是设置了同步屏障之后,Handler只会处理异步消息。换句话说,同步屏障为Handler消息机制增加了一种简单的优先级机制,异步消息的优先级要高于同步消息。

Message next() {
    //...
    int pendingIdleHandlerCount = -1; // -1 only during first iteration
    int nextPollTimeoutMillis = 0;
    for (;;) {
        //...
        synchronized (this) {
            // Try to retrieve the next message.  Return if found.
            final long now = SystemClock.uptimeMillis();
            Message prevMsg = null;
            Message msg = mMessages;
            if (msg != null && msg.target == null) {//碰到同步屏障
                // Stalled by a barrier.  Find the next asynchronous message in the queue.
                // do while循环遍历消息链表
                // 跳出循环时,msg指向离表头最近的一个异步消息
                do {
                    prevMsg = msg;
                    msg = msg.next;
                } while (msg != null && !msg.isAsynchronous());
            }
            if (msg != null) {
                if (now < msg.when) {
                    //...
                } else {
                    // Got a message.
                    mBlocked = false;
                    if (prevMsg != null) {
                        //将msg从消息链表中移除
                        prevMsg.next = msg.next;
                    } else {
                        mMessages = msg.next;
                    }
                    msg.next = null;
                    if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                    msg.markInUse();
                    //返回异步消息
                    return msg;
                }
            } else {
                // No more messages.
                nextPollTimeoutMillis = -1;
            }
            //...
        }
        //...
    }
}

同步分割栏的应用

Android应用框架中为了更快的响应UI刷新事件在ViewRootImpl.scheduleTraversals中使用了同步屏障

void scheduleTraversals() {
    if (!mTraversalScheduled) {
        mTraversalScheduled = true;
        //设置同步障碍,确保mTraversalRunnable优先被执行
        mTraversalBarrier = mHandler.getLooper().getQueue().postSyncBarrier();
        //内部通过Handler发送了一个异步消息
        mChoreographer.postCallback(
                Choreographer.CALLBACK_TRAVERSAL, mTraversalRunnable, null);
        if (!mUnbufferedInputDispatch) {
            scheduleConsumeBatchedInput();
        }
        notifyRendererOfFramePending();
        pokeDrawLockIfNeeded();
    }
}

mTraversalRunnable调用了performTraversals执行measure、layout、draw

为了让mTraversalRunnable尽快被执行,在发消息之前调用MessageQueue.postSyncBarrier设置了同步屏障

聊一聊Android的消息机制-悠然红茶

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,377评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,390评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,967评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,344评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,441评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,492评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,497评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,274评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,732评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,008评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,184评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,837评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,520评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,156评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,407评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,056评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,074评论 2 352