线性代数的本质——笔记1

1.向量是什么?

有三种理解向量的方式,如下:

  • 向量是空间中的一条箭头,它有长度方向两个属性。
  • 向量是有着一串数字的列表
  • 向量可以是任何东西,只要它的加法乘法有意义。

2.向量是空间中一组基向量的线性组合

以2维空间为例,存在一组基向量\vec{i}= \begin{bmatrix} 1\\ 0\end{bmatrix}, \vec{j}=\begin{bmatrix} 0 \\ 1\end{bmatrix}。这个二维空间中的任意一个向量都可以由这一组基向量表示,那么就说这个二维空间是\vec{i},\vec{j}这一组基向量所张成的空间。具体表示方式为:

\vec{u}=a\vec{i}+b\vec{j}

其中a,b是任意实数,也是\vec{u}的值。 \vec{u}=\begin{bmatrix} a\\b \end{bmatrix}
仅仅通过对基向量进行缩放相加的操作就能得到空间中的任何一个向量,这也说明向量加法与数乘尤为重要。

所以说

看到向量就要想到它是所处空间中一组基向量的线性组合。

自然,这样的基向量有无数组, 二维空间中,我们通常选择上述的\vec {i } ,\vec {j}作为基向量。

3.线性变换

变换其实等价于函数,在此场景下,函数输入的是向量,输出的也是向量。

L(\vec{u})=\vec{v}

输入输出的向量维度可以不同。

之所以用变换而不是函数来定义,是因为变换更强调一个运动的过程,例如二维空间中我们能想象,向量经过一个线性变换从而移动到空间中其他位置。

变换有线性变换和非线性变换2种,本节讲的是线性变换及其与矩阵的关系。

将向量想象成箭头,那么线性变换是指起点在原点的向量在不同空间中的移动,且保持了向量数乘和加法的不变性。
这个不同空间可以理解为

  1. 空间的维数不一样。
  2. 空间的定义的基向量不一样。

例如一个3维向量经过线性变换变成了3维向量。(维数一致)
或者一个3维向量经过线性变换变成了2维向量。(维数不一致)

上述的1其实是2的一个特例,如果变换后空间维数不一样了,那么空间定义的基向量肯定也发生了改变。

变换(或映射)T称为线性变换, 若:
对定义域内的一切u,vT(u+v)=T(u)+T(v)
对定义域内的一切u; 和任何标量cT(cu)=cT(u)

直观上,我们可以使用

  • 变换过程中,空间原点的位置不改变。
  • 变换后空间中的直线还是直线,不能弯曲。

2个条件来表示线性变换。

4.怎样进行线性变换?

我们知道线性变换就是将空间中所有的向量移动到一个新的位置。在此过程过程中,向量的起点不变。那么如何追踪任意一个变换过的向量呢?

由上一节我们知道了向量其实是基向量的线性组合,任何向量都可以由基向量来表示。

如果我们只追踪基向量,空间中任意一个变换后的向量自然就能由变换后的基向量来表示。

怎么知道基向量的变换情况呢?在二维空间中,我们只需观察\vec{i}= \begin{bmatrix} 0 \\ 1 \end{bmatrix} ,\vec{j}= \begin{bmatrix} 0 \\ 1 \end{bmatrix}这组基向量。并且线性变换后的基向量的系数就是线性变换之前基向量的系数,也就是线性变换之前 \vec{u}的坐标a_1,b_1

二维空间中的一组基向量

问题如下:

已知
\vec{u}=a_1\vec{i}+b_1\vec{j}

\vec{u}=\begin{bmatrix} a_{1}\\b_{1} \end{bmatrix}\vec{u}经过线性变换后变为\vec{v},即L(\vec{u})=\vec{v},此时\vec{i},\vec{j}相应地变换为\vec{i_1}= \begin{bmatrix} a \\ b\end{bmatrix}\vec{j_1}= \begin{bmatrix} c \\ d \end{bmatrix},且\vec{v}=a_2\vec{i_1}+b_2\vec{j_1}
证明a_{2}=a_{1},b_{2}=b_{1}


证明如下:

由上文线性变换的定义可知:
L(\vec{u})=L(a_{1}\vec{i}+b_{1}\vec{j})=a_1L(\vec{i})+b_1L(\vec{j})=a_1\vec{i_1}+b_1\vec{j_1}=\vec{v}
所以a_{2}=a_{1},b_{2}=b_{1}


所以只要我们知道了变换后的基向量坐标,我们就能进行线性变换。

5.矩阵是什么?

现在假设已知线性变换后的基向量\vec{i_1},\vec{j_1}
借用上述证明中的各已知条件。

\vec{v}=a_1\vec{i_1}+b_1\vec{j_1}
\vec{i_1}= \begin{bmatrix} a \\ b\end{bmatrix}\vec{j_1}= \begin{bmatrix} c \\ d\end{bmatrix}

那么将\vec{i_1},\vec{j_1}的坐标"包装"在一个2×2的格子里,我们称其为矩阵
\begin{bmatrix}a&b\\c&d\end{bmatrix}

看到这里,大家应该明白了原来矩阵是经过线性变换后的基向量的拼接。

也就是说,矩阵代表着线性变换,空间的线性变换由变换后的基向量的坐标来完全确定。

而日常应用中通常会给出矩阵,所以本节开头假设变换后的基向量已知是成立的,它就是矩阵的元素嘛。

 因此,看到矩阵就要想到它代表着空间中的线性变换,它是线性变换后空间中一组基向量的坐标。

那么空间中变换后的任意向量就可以由基向量来表示了。

请看下面的例子:

有矩阵 \begin{bmatrix}a&b\\c&d\end{bmatrix},另有向量\begin{bmatrix} x \\ y \end{bmatrix},则向量在矩阵的"作用"下,(经过一个线性变换),向量的新坐标(移动到一个新的位置)如下:

\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} =x\begin{bmatrix} a \\ c \end{bmatrix}+y\begin{bmatrix} b\\d \end{bmatrix}

请仔细看,跟上文中\vec{u}=a\vec{i}+b\vec{j}
这一形式类似,此时x,y相当于a,b,为基向量的系数,而\begin{bmatrix} a\\c \end{bmatrix}\begin{bmatrix} b\\d \end{bmatrix}
则为线性变换后的基向量。

因此矩阵与向量的乘法的直观解释如下:

将原向量的坐标取出与变换后的基向量对应相乘,表示原向量进行了一次线性变换。


6. 矩阵乘法如何理解?

既然一个矩阵代表空间的一次线性变换,那么矩阵相乘就表示变换过一次的基向量再进行一次线性变换,即对原空间进行两次线性变换。

进行两次变换的效果等价于2个矩阵相乘后得到的1个矩阵一次变换的效果。


矩阵乘法

7.参考

主要内容来源于b站up主@3Blue1Brown线性代数的本质

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,558评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,002评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,036评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,024评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,144评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,255评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,295评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,068评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,478评论 1 305
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,789评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,965评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,649评论 4 336
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,267评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,982评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,223评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,800评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,847评论 2 351

推荐阅读更多精彩内容