Logistic回归之有序logistic回归分析

Logistic回归分析(logit回归)一般可分为3类,分别是二元logistic回归分析、多分类Logistic回归分析和有序Logistic回归分析。logistic回归分析类型如下所示。

logistic回归


Logistic回归分析用于研究X对Y的影响,并且对X的数据类型没有要求,X可以为定类数据,也可以为定量数据,但要求Y必须为定类数据,并且根据Y的选项数,使用相应的数据分析方法。

  • 如果Y有两个选项,如愿意和不愿意、是和否,那么应该使用有序logistic回归分析(SPSSAU进阶方法->二元logit);


  • 如果Y有多个选项,并且各个选项之间可以对比大小,例如,1代表“不愿意”,2代表“无所谓”,3代表“愿意”,这3个选项具有对比意义,数值越高,代表样本的愿意程度越高,那么应该使用多元有序Logistic回归分析(SPSSAU进阶方法->有序logit);


  • 如果Y有多个选项,并且各个选项之间不具有对比意义,例如,1代表“淘宝”,2代表“天猫”,3代表“京东”,4代表“亚马逊中国”,数值仅代表不同类别,数值大小不具有对比意义,那么应该使用多元无序Logistic回归分析(SPSSAU进阶方法->多分类logit)。


1、有序logistic回归分析基本说明

进行有序logistic回归时,通常需要有以下步骤,分别是连接函数选择,平行性检验,模型似然比检验,参数估计分析,模型预测准确效果共5个步骤。


1) 连接函数选择

SPSSAU共提供五类连接函数,分别如下:

SPSSAU默认使用logit连接函数,如果模型没有特别的要求,应该首选使用logit连接函数,尤其是因变量的选项数量很少的时候。连接函数可能会对平行性检验起到影响,如果平行性检验无法通过时,可考虑选择更准确的连接函数进行尝试。正常情况下使用默认的logit连接函数即可。


2) 平行性检验

一般来说,模型最好通过平行性检验,但在研究中很可能出现无法通过的现象。此时有以下建议,如下:

  • 改用多分类logistic回归;换个方法,因为一般可使用有序logistic回归的数据也可以使用多分类logistic回归分析;

  • 改用线性回归;可考虑换成线性回归分析尝试;

  • 改变连接函数;选择更适合的连接函数;

  • 将因变量的类别选项进行一些合并处理等,使用SPSSAU数据处理->数据编码功能。

一般来说,有序logistic回归有一定的稳健性,即平行性检验对应的P值接近于0.05时,可考虑直接接受有序logistic回归分析的结果。


3) 模型似然比检验

模型似然比检验用于对整个模型的有效性进行分析,一般对应的P值小于0.05即可。同时SPSSAU还提供AIC和BIC这两个指标值,如果模型有多个,而且希望进行模型之间的优劣比较,可使用此两个指标,此两个指标是越小越好。具体可直接查看SPSSAU的智能分析和分析建议即可。


4) 参数估计分析

参数估计分析其实就已经开始进入实质性的分析了。首先可分析R方,即模型的拟合水平情况,SPSSAU提供3个R方值指标,分别是McFadden R 方、Cox & Snell R 方和Nagelkerke R 方。此3个R 方均为伪R 方值,其值越大越好,但其无法非常有效的表达模型的拟合程度,意义相对交小,而且多数情况此3个指标值均会特别小,研究人员不用过分关注于此3个指标值。一般报告其中任意一个R方值指标即可。


5) 模型预测效果分析

有序logistic回归建模时,还可以对模型的预测效果进行分析,SPSSAU也会默认输出结果,当然一般情况下我们关注于影响关系,因而对于预测效果等不那么看重。即模型预测质量的关注乎相对较低,多数时候直接忽略它。


2、如何使用SPSSAU进行有序logistic回归操作

关于有序logistic回归的操作上,SPSSAU操作如下:

至于分析结果如下:

首先对模型整体有效性进行分析(模型似然比检验),从上表可知:此处模型检验的原定假设为:是否放入自变量(性别_女, 年龄, 年收入水平, 文化程度)两种情况时模型质量均一样;分析显示拒绝原假设(chi=62.510,p=0.000<0.05),即说明本次构建模型时,放入的自变量具有有效性,本次模型构建有意义。


首先可针对任意一个R方值进行描述,一般是McFadden R 方为0.08,意味着自变量仅解释幸福度8%的原因,logistic回归时R方值一般都比较小,一般不用过多理会。

具体分析影响关系时,可直接参考SPSSAU的智能分析即可,而上表格还列出因变量阈值对应的信息,该数据对数据分析并无过多意义,仅为数学上的指标值而已。

性别_女的回归系数值为0.072,但是并没有呈现出显著性(z=0.352,p=0.725>0.05),意味着性别并不会对幸福水平产生影响关系。

年龄的回归系数值为-0.027,并且呈现出0.01水平的显著性(z=-2.921,p=0.003<0.01),意味着年龄会对幸福水平产生显著的负向影响关系。年龄越大的人幸福水平反而越低。

年收入水平的回归系数值为0.508,并且呈现出0.01水平的显著性(z=4.849,p=0.000<0.01),意味着年收入水平会对幸福水平产生显著的正向影响关系。收入水平越高的群体,幸福度会越高。

文化程度的回归系数值为0.311,并且呈现出0.01水平的显著性(z=3.502,p=0.000<0.01),意味着文化程度会对幸福水平产生显著的正向影响关系。文化水平越高的群体,他们的幸福度会越高。


3、有序logistic相关问题

在使用SPSSSAU进行有序logistic回归时,可能会出现一些问题,比如提示奇异矩阵,质量异常,Y值只能为0或1等,接下来一一说明。



第1点:出现奇异矩阵或质量异常

如果做有序logsitic回归时提示奇异矩阵,通常有两个原因,一是虚拟哑变量设置后,本应该少放1项作为参考项但是并没有,而是把所有的哑变量项都放入框中,这会导致绝对的共线性问题即会出现奇异矩阵矩阵。二是X之间有着太强的共线性(可使用通用方法的线性回归查看下VIF值),此时也可能导致模型无法拟合等。先找出原因,然后把有问题的项移出模型中即可。

同时,如果因变量Y的分布极其不均匀,SPSSAU建议可先对类别进行组合,可使用数据处理里面的数据编码完成。


第2点:无法通过平行性检验?

有序Logit回归的分析要求数据满足平行性检验,如果不满足,SPSSAU建议使用多分类Logti回归分析即可,当然也可以改用线性回归,改变连接函数,对因变量Y的选项进行组合等多种方式,尝试并在最终选择出最优方案即可。


第3点:OR值的意义

OR值=exp(b)值,即回归系数的指数次方,该值在医学研究里面使用较多,实际意义是X增加1个单位时,Y的增加幅度。如果仅仅是研究影响关系,该值意义较小。


第4点: wald值或z值

z 值=回归系数/标准误,该值为中间过程值无意义,只需要看p 值即可。有的软件会提供wald值(但不提供z 值,该值也无实际意义),wald值= z 值的平方。


第5点: McFadden R 方、Cox & Snell R 方和Nagelkerke R 方相关问题?

Logit回归时会提供此3个R 方值(分别是McFadden R 方、Cox & Snell R 方和Nagelkerke R 方),此3个R 方均为伪R 方值,其值越大越好,但其无法非常有效的表达模型的拟合程度,意义相对交小,而且多数情况此3个指标值均会特别小,研究人员不用过分关注于此3个指标值。一般报告其中任意一个R方值指标即可。



©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,874评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,102评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,676评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,911评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,937评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,935评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,860评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,660评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,113评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,363评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,506评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,238评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,861评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,486评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,674评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,513评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,426评论 2 352