Given a string representing arbitrarily nested ternary expressions, calculate the result of the expression. You can always assume that the given expression is valid and only consists of digits 0-9, ?, :, T and F (T and F represent True and False respectively).
Note:
The length of the given string is ≤ 10000.
Each number will contain only one digit.
The conditional expressions group right-to-left (as usual in most languages).
The condition will always be either T or F. That is, the condition will never be a digit.
The result of the expression will always evaluate to either a digit 0-9, T or F.
Example 1:
Input: "T?2:3"
Output: "2"
Explanation: If true, then result is 2; otherwise result is 3.
Example 2:
Input: "F?1:T?4:5"
Output: "4"
Explanation: The conditional expressions group right-to-left. Using parenthesis, it is read/evaluated as:
"(F ? 1 : (T ? 4 : 5))" "(F ? 1 : (T ? 4 : 5))"
-> "(F ? 1 : 4)" or -> "(T ? 4 : 5)"
-> "4" -> "4"
Example 3:
Input: "T?T?F:5:3"
Output: "F"
Explanation: The conditional expressions group right-to-left. Using parenthesis, it is read/evaluated as:
"(T ? (T ? F : 5) : 3)" "(T ? (T ? F : 5) : 3)"
-> "(T ? F : 3)" or -> "(T ? F : 5)"
-> "F" -> "F"
Solution:Stack
思路:
利用栈stack的思想,存所有的字符,将原数组从后往前遍历,将遍历到的字符都压入栈中,我们检测如果栈首元素是问号,说明我们当前遍历到的字符是T或F,然后我们移除问号,再取出第一部分,再移除冒号,再取出第二部分,我们根据当前字符来判断是放哪一部分进栈,这样遍历完成后,所有问号都处理完了,剩下的栈顶元素即为所求:
Time Complexity: O(N) Space Complexity: O(N)
Solution Code:
// Input: "T?T?F:5:3"
class Solution {
public String parseTernary(String expression) {
if (expression == null || expression.length() == 0) return "";
Deque<Character> stack = new LinkedList<>();
for (int i = expression.length() - 1; i >= 0; i--) {
char c = expression.charAt(i);
if (!stack.isEmpty() && stack.peek() == '?') {
stack.pop(); //pop '?'
char first = stack.pop();
stack.pop(); //pop ':'
char second = stack.pop();
if (c == 'T') stack.push(first);
else stack.push(second);
} else {
stack.push(c);
}
}
return String.valueOf(stack.peek());
}
}