Elasticsearch搜索Suggest功能优化

搜索Suggest需要优化问题:
  • 怎么优化Suggest词库,提升Suggest词准确率
  • 怎么提高响应速度
suggest词库获取
  • 冷启动可以从内容中提取热词数据来解决,或者人工设置
  • 挖掘搜索日志:
    • 挖掘近1个月搜索日志,按照每天独立IP进行统计频次,即每个IP用户天搜索同一关键词多次只记一次,用IP过滤也有其局限性,伪IP,动态IP,局域网共享同一公网IP,都会影响到基于IP来判断用户的准确性,你也可以使用sessionId或者userId来判断
    • 统计后搜索词频次之后,抽取搜索频次>100(自定阈值)的词,同时对日志数据进行清洗,过滤去除大于10个字(去除太长的长尾词),单字和符号内容
    • 定时更新suggest词库中。
  • 搜索日志里面包含大量 误输入词:
    1. 需要在suggest词库里面去掉误输入词,对于搜索频次高的词,可以挖掘其对应的正确词,通过同义词进行查询改写。
    2. 误输入词同义词挖掘可以通过挖掘搜索session序列,使用word2vec训练来获取误输入词的同义词,通过分词器同义词设置,对误输入词进行查询改写。
搜索Suggest需实现以下几个功能:
  • 匹配:能够通过用户的输入进行前缀匹配;
  • 排序:根据建议词的优先级或者搜索热度进行排序;
  • 纠错:能够对用户的输入进行拼写纠错(suggest建议优先prefix匹配,不宜过多提示,因此只需提供前缀匹配,中文拼音匹配即可)
搜索框

搜索时:如上图所示,可引导用户选择category,提升Suggest准确度

匹配

  1. 通过分词器对Suggest进行单字,全拼,拼音首字母进行索引
    Elasticsearch 对于的字段mapping settings及分词器设置参考

suggest 字段

  • "preserve_separators": false, 这个设置为false,将忽略空格之类的分隔符
  • "preserve_position_increments": true,如果建议词第一个词是停用词,我们使用了过滤停用词的分析器,需要将此设置为false
提升响应速度
关于completion FST编码原理

如:“天上人间” 分析为:“天上人间”、“天上”、“上人”、“人间” 四个词条。 要注意这4个词条还有顺序,也就是position分别为0, 1, 2, 3。FST实际上是前缀编码,这些词被顺序串联在一起进行编码,并记录了每个词条的相对位置,编码后形如:天上人间|天上|上人|人间 0 1 2 3

特别注意,这时候所有的查找都只能从0位置的“天”开始。做completion suggest的时候, 输入的词条经过分析后, 必须有相同的前缀和相对位址。 因为你的搜索用的simple analyzer,当输入"天"的时候, 分析出来的是"天" (0), 在FST里是从起始位置开始可以匹配到。其他输入“天上” “天上人” 都是从位置0开始的前缀,也都可以匹配。
但是如果你输入“上”, simple analyzer分析出来的是"上" (0), 去FST里查,第一个就不匹配,所以没结果。

为了帮助理解,针对你的例子,可以试一下如下的搜索:

    POST test_suggestion/_search
    {
      "suggest": {
        "term-suggestion": {
          "prefix": "天上人间 天上 上",
          "completion": {
            "field": "keyword_suggestion"
          }
        }
      }
    }

你会发现,上面用空格分隔的3个词,也可以match。 原因在于搜索用的simple analyzer是用空格一类的分隔符分词的,分词结果是: 天上人间|天上|上 0 1 2,顺着FST走下去,可以做到前缀匹配。

总结来说,当使用completion suggester的时候, 不是用于完成 类似于 "关键词"这样的模糊匹配场景,而是用于完成关键词前缀匹配的。 对于汉字的处理,无需使用ik/ HanLP一类的分词器,直接使用keyword analyzer,配合去除一些不需要的stop word即可。

举个例子,做火车站站名的自动提示补全,你可能希望用户输入“上海” 或者 “虹桥” 都提示"上海虹桥火车站“ 。 如果想使用completion suggester来做,正确的方法是为"上海虹桥火车站“这个站名准备2个completion词条,分别是:
"上海虹桥火车站"
"虹桥火车站"
这样用户的输入不管是从“上海”开始还是“虹桥”开始,都可以得到"上海虹桥火车站"的提示。

  • 因此想要实现completion suggest 中文拼音混合提示,需要提供三个字段,中文字段,采用standard分词,全拼字段,首字母字段,对汉字都采用standard分词,分词后对单字进行分词,确保FST索引的都是单字对应的拼音,这样应该就可以完成中英文拼音suggest
  • 第一步是先采用汉字前缀匹配的结果,使用全拼匹配也可以返回结果,但是存在同音字时,weight高的同音字会覆盖原来的字,导致suggest不准确
  • 第二部,当汉字匹配数量不够时,启用全拼匹配,可以达到拼音纠错补充效果,索引时只索引全拼拼音
  • 第三步:正常来说首字母拼音一般匹配不到内容,此时可以使用拼音首字母匹配,索引时只索引首字母拼音
  • 第四步:前面匹配的Suggest词不够时,最后也可以采用fuzzy查询进行补全

使用fuzzy模糊查询

fuzzy模糊查询是基于编辑距离算法来匹配文档。编辑距离的计算基于我们提供的查询词条和被搜索文档。
Complete suggest支持fuzzy查询,计算编辑距离对CPU消耗比较大,需要设置以下参数来限制对性能的影响:

  1. prefix_length 不能被 “模糊化” 的初始字符数。 大部分的拼写错误发生在词的结尾,而不是词的开始。 例如通过将 prefix_length 设置为 3 ,你可能够显著降低匹配的词项数量。
    2.min_length 开始进行模糊匹配的最小输入长度
    3.fuzzy查询只在前缀匹配数不够时启用进行补全

排序

从搜索日志挖掘的Suggest词,可以根据搜索词的搜索频次作为热度来设置weight,Suggest会根据weight来排序。

java API代码参考

LinkedHashSet<String> returnSet = new LinkedHashSet<>();
        Client client = elasticsearchTemplate.getClient();
        SuggestRequestBuilder suggestRequestBuilder = client.prepareSuggest(elasticsearchTemplate.getPersistentEntityFor(SuggestEntity.class).getIndexName());
        //全拼前缀匹配
        CompletionSuggestionBuilder fullPinyinSuggest = new CompletionSuggestionBuilder("full_pinyin_suggest")
                .field("full_pinyin").text(input).size(10);
        //汉字前缀匹配
        CompletionSuggestionBuilder suggestText = new CompletionSuggestionBuilder("suggestText")
                .field("suggestText").text(input).size(size);
        //拼音搜字母前缀匹配
        CompletionSuggestionBuilder prefixPinyinSuggest = new CompletionSuggestionBuilder("prefix_pinyin_text")
                .field("prefix_pinyin").text(input).size(size);
        suggestRequestBuilder = suggestRequestBuilder.addSuggestion(fullPinyinSuggest).addSuggestion(suggestText).addSuggestion(prefixPinyinSuggest);
        SuggestResponse suggestResponse = suggestRequestBuilder.execute().actionGet();
        Suggest.Suggestion prefixPinyinSuggestion = suggestResponse.getSuggest().getSuggestion("prefix_pinyin_text");
        Suggest.Suggestion fullPinyinSuggestion = suggestResponse.getSuggest().getSuggestion("full_pinyin_suggest");
        Suggest.Suggestion suggestTextsuggestion = suggestResponse.getSuggest().getSuggestion("suggestText");
        List<Suggest.Suggestion.Entry> entries = suggestTextsuggestion.getEntries();
        //汉字前缀匹配
        for (Suggest.Suggestion.Entry entry : entries) {
            List<Suggest.Suggestion.Entry.Option> options = entry.getOptions();
            for (Suggest.Suggestion.Entry.Option option : options) {
                returnSet.add(option.getText().toString());
            }
        }
        //全拼suggest补充
        if (returnSet.size() < 10) {
            List<Suggest.Suggestion.Entry> fullPinyinEntries = fullPinyinSuggestion.getEntries();
            for (Suggest.Suggestion.Entry entry : fullPinyinEntries) {
                List<Suggest.Suggestion.Entry.Option> options = entry.getOptions();
                for (Suggest.Suggestion.Entry.Option option : options) {
                    if (returnSet.size() < 10) {
                        returnSet.add(option.getText().toString());
                    }
                }
            }
        }
        //首字母拼音suggest补充
        if (returnSet.size() == 0) {
            List<Suggest.Suggestion.Entry> prefixPinyinEntries = prefixPinyinSuggestion.getEntries();
            for (Suggest.Suggestion.Entry entry : prefixPinyinEntries) {
                List<Suggest.Suggestion.Entry.Option> options = entry.getOptions();
                for (Suggest.Suggestion.Entry.Option option : options) {
                    returnSet.add(option.getText().toString());
                }
            }
        }
        return new ArrayList<>(returnSet);

ES setting mapping配置

{
  "settings": {
    "analysis": {
      "analyzer": {
        "prefix_pinyin_analyzer": {
          "tokenizer": "standard",
          "filter": [
            "lowercase",
            "prefix_pinyin"
          ]
        },
        "full_pinyin_analyzer": {
          "tokenizer": "standard",
          "filter": [
            "lowercase",
            "full_pinyin"
          ]
        }
      },
      "filter": {
        "_pattern": {
          "type": "pattern_capture",
          "preserve_original": 1,
          "patterns": [
            "([0-9])",
            "([a-z])"
          ]
        },
        "prefix_pinyin": {
          "type": "pinyin",
          "keep_first_letter": true,
          "keep_full_pinyin": false,
          "none_chinese_pinyin_tokenize": false,
          "keep_original": false
        },
        "full_pinyin": {
          "type": "pinyin",
          "keep_first_letter": false,
          "keep_full_pinyin": true,
          "keep_original": false,
          "keep_none_chinese_in_first_letter": false
        }
      }
    }
  },
  "mappings": {
    "suggest": {
      "properties": {
        "id": {
          "type": "string"
        },
        "suggestText": {
          "type": "completion",
          "analyzer": "standard",
          "payloads": true,
          "preserve_separators": false,
          "preserve_position_increments": true,
          "max_input_length": 50
        },
        "prefix_pinyin": {
          "type": "completion",
          "analyzer": "prefix_pinyin_analyzer",
          "search_analyzer": "standard",
          "preserve_separators": false,
          "payloads": true
        },
        "full_pinyin": {
          "type": "completion",
          "analyzer": "full_pinyin_analyzer",
          "search_analyzer": "full_pinyin_analyzer",
          "preserve_separators": false,
          "payloads": true
        }
      }
    }
  }
}

DSL查询语句

POST    _suggest

{
  "text": "cy",
  "prefix_pinyin": {
    "completion": {
      "field": "prefix_pinyin",
      "size": 10
    }
  },
  "full_pinyin": {
    "completion": {
      "field": "full_pinyin",
      "size": 10
    }
  },
  "suggestText": {
    "completion": {
      "field": "suggestText",
      "size": 10
    }
  }
}
suggest性能优化,从之前平均响应时间5.5ms 降低到3.5ms,Suggest词更加准确
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,222评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,455评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,720评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,568评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,696评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,879评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,028评论 3 409
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,773评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,220评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,550评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,697评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,360评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,002评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,782评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,010评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,433评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,587评论 2 350

推荐阅读更多精彩内容