cookie和缓存
Session是由应用服务器维持的一个服务器端的存储空间,用户在连接服务器时,会由服务器生成一个唯一的SessionID,用该SessionID 为标识符来存取服务器端的Session存储空间。而SessionID这一数据则是保存到客户端,用Cookie保存的,用户提交页面时,会将这一 SessionID提交到服务器端,来存取Session数据。这一过程,是不用开发人员干预的。所以一旦客户端禁用Cookie,那么Session也会失效。
服务器也可以通过URL重写的方式来传递SessionID的值,因此不是完全依赖Cookie。如果客户端Cookie禁用,则服务器可以自动通过重写URL的方式来保存Session的值,并且这个过程对程序员透明。
可以试一下,即使不写Cookie,在使用request.getCookies();取出的Cookie数组的长度也是1,而这个Cookie的名字就是JSESSIONID,还有一个很长的二进制的字符串,是SessionID的值。Cookie是客户端的存储空间,由浏览器来维持。
在一些投票之类的场合,我们往往因为公平的原则要求每人只能投一票,在一些WEB开发中也有类似的情况,这时候我们通常会使用COOKIE来实现,例如如下的代码:
< % cookie[]cookies = request.getCookies();
if (cookies.lenght == 0 || cookies == null)
doStuffForNewbie();
//没有访问过
}
else
{
doStuffForReturnVisitor(); //已经访问过了
}
% >
这是很浅显易懂的道理,检测COOKIE的存在,如果存在说明已经运行过写入COOKIE的代码了,然而运行以上的代码后,无论何时结果都是执行doStuffForReturnVisitor(),通过控制面板-Internet选项-设置-察看文件却始终看不到生成的cookie文件,奇怪,代码明明没有问题,不过既然有cookie,那就显示出来看看。
cookie[]cookies = request.getCookies();
if (cookies.lenght == 0 || cookies == null)
out.println("Has not visited this website");
}
else
{
for (int i = 0; i < cookie.length; i++)
{
out.println("cookie name:" + cookies[i].getName() + "cookie value:" +
cookie[i].getValue());
}
}
运行结果:
cookie name:JSESSIONID cookie value:KWJHUG6JJM65HS2K6
为什么会有cookie呢,大家都知道,http是无状态的协议,客户每次读取web页面时,服务器都打开新的会话,而且服务器也不会自动维护客户的上下文信息,那么要怎么才能实现网上商店中的购物车呢,session就是一种保存上下文信息的机制,它是针对每一个用户的,变量的值保存在服务器端,通过SessionID来区分不同的客户,session是以cookie或URL重写为基础的,默认使用cookie来实现,系统会创造一个名为JSESSIONID的输出cookie,我们叫做session cookie,以区别persistent cookies,也就是我们通常所说的cookie,注意session cookie是存储于浏览器内存中的,并不是写到硬盘上的,这也就是我们刚才看到的JSESSIONID,我们通常情是看不到JSESSIONID的,但是当我们把浏览器的cookie禁止后,web服务器会采用URL重写的方式传递Sessionid,我们就可以在地址栏看到sessionid=KWJHUG6JJM65HS2K6之类的字符串。
明白了原理,我们就可以很容易的分辨出persistent cookies和session cookie的区别了,网上那些关于两者安全性的讨论也就一目了然了,session cookie针对某一次会话而言,会话结束session cookie也就随着消失了,而persistent cookie只是存在于客户端硬盘上的一段文本(通常是加密的),而且可能会遭到cookie欺骗以及针对cookie的跨站脚本攻击,自然不如session cookie安全了。
通常session cookie是不能跨窗口使用的,当你新开了一个浏览器窗口进入相同页面时,系统会赋予你一个新的sessionid,这样我们信息共享的目的就达不到了,此时我们可以先把sessionid保存在persistent cookie中,然后在新窗口中读出来,就可以得到上一个窗口SessionID了,这样通过session cookie和persistent cookie的结合我们就实现了跨窗口的session tracking(会话跟踪)。
在一些web开发的书中,往往只是简单的把Session和cookie作为两种并列的http传送信息的方式,session cookies位于服务器端,persistent cookie位于客户端,可是session又是以cookie为基础的,明白的两者之间的联系和区别,我们就不难选择合适的技术来开发web service了。
- CACHE ,则是服务器端的缓存,是所有用户都可以访问和共享的。
堆和栈的区别
一、预备知识—程序的内存分配
一个由C/C++编译的程序占用的内存分为以下几个部分
1、栈区(stack)— 由编译器自动分配释放 ,存放函数的参数值,局部变量的值等。其
操作方式类似于数据结构中的栈。
2、堆区(heap) — 一般由程序员分配释放, 若程序员不释放,程序结束时可能由OS回
收 。注意它与数据结构中的堆是两回事,分配方式倒是类似于链表,呵呵。
3、全局区(静态区)(static)—,全局变量和静态变量的存储是放在一块的,初始化的
全局变量和静态变量在一块区域, 未初始化的全局变量和未初始化的静态变量在相邻的另
一块区域。 - 程序结束后由系统释放。
4、文字常量区 —常量字符串就是放在这里的。 程序结束后由系统释放
5、程序代码区—存放函数体的二进制代码。
二、例子程序
//main.cpp
int a = 0; 全局初始化区
char *p1; 全局未初始化区
main()
{
int b; 栈
char s[] = "abc"; 栈
char *p2; 栈
char *p3 = "123456"; 123456/0在常量区,p3在栈上。
static int c =0; 全局(静态)初始化区
p1 = (char *)malloc(10);
p2 = (char *)malloc(20);
分配得来得10和20字节的区域就在堆区。
strcpy(p1, "123456"); 123456/0放在常量区,编译器可能会将它与p3所指向的"123456"
优化成一个地方。
}
二、堆和栈的理论知识
2.1申请方式
stack: 由系统自动分配。
例如,声明在函数中一个局部变量 int b; 系统自动在栈中为b开辟空间
heap: 需要程序员自己申请,并指明大小,在c中malloc函数
如p1 = (char *)malloc(10);
在C++中用new运算符
如p2 = new char[10];
但是注意p1、p2本身是在栈中的。
2.2
申请后系统的响应
- 栈:只要栈的剩余空间大于所申请空间,系统将为程序提供内存,否则将报异常提示栈溢出。
- 堆:首先应该知道操作系统有一个记录空闲内存地址的链表,当系统收到程序的申请时,会遍历该链表,寻找第一个空间大于所申请空间的堆结点,然后将该结点从空闲结点链表中删除,并将该结点的空间分配给程序,另外,对于大多数系统,会在这块内存空间中的首地址处记录本次分配的大小,这样,代码中的delete语句才能正确的释放本内存空间。另外,由于找到的堆结点的大小不一定正好等于申请的大小,系统会自动的将多余的那部分重新放入空闲链表中。
2.3申请大小的限制
- 栈:在Windows下,栈是向低地址扩展的数据结构,是一块连续的内存的区域。这句话的意思是栈顶的地址和栈的最大容量是系统预先规定好的,在WINDOWS下,栈的大小是2M(也有的说是1M,总之是一个编译时就确定的常数),如果申请的空间超过栈的剩余空间时,将提示overflow。因此,能从栈获得的空间较小。
- 堆:堆是向高地址扩展的数据结构,是不连续的内存区域。这是由于系统是用链表来存储的空闲内存地址的,自然是不连续的,而链表的遍历方向是由低地址向高地址。堆的大小受限于计算机系统中有效的虚拟内存。由此可见,堆获得的空间比较灵活,也比较大。
2.4申请效率的比较:
栈由系统自动分配,速度较快。但程序员是无法控制的。
堆是由new分配的内存,一般速度比较慢,而且容易产生内存碎片,不过用起来最方便. 另外,在WINDOWS下,最好的方式是用VirtualAlloc分配内存,他不是在堆,也不是在栈是直接在进程的地址空间中保留一块内存,虽然用起来最不方便。但是速度快,也最灵活。
2.5堆和栈中的存储内容
- 栈: 在函数调用时,第一个进栈的是主函数中后的下一条指令(函数调用语句的下一条可执行语句)的地址,然后是函数的各个参数,在大多数的C编译器中,参数是由右往左入栈的,然后是函数中的局部变量。注意静态变量是不入栈的。当本次函数调用结束后,局部变量先出栈,然后是参数,最后栈顶指针指向最开始存的地址,也就是主函数中的下一条指令,程序由该点继续运行。
- 堆:一般是在堆的头部用一个字节存放堆的大小。堆中的具体内容由程序员安排。
2.6存取效率的比较
char s1[] = "aaaaaaaaaaaaaaa";
char *s2 = "bbbbbbbbbbbbbbbbb";
aaaaaaaaaaa是在运行时刻赋值的;
而bbbbbbbbbbb是在编译时就确定的;
但是,在以后的存取中,在栈上的数组比指针所指向的字符串(例如堆)快。
比如:
#include
void main()
{
char a = 1;
char c[] = "1234567890";
char *p ="1234567890";
a = c[1];
a = p[1];
return;
}
对应的汇编代码
10: a = c[1];
00401067 8A 4D F1 mov cl,byte ptr [ebp-0Fh]
0040106A 88 4D FC mov byte ptr [ebp-4],cl
11: a = p[1];
0040106D 8B 55 EC mov edx,dword ptr [ebp-14h]
00401070 8A 42 01 mov al,byte ptr [edx+1]
00401073 88 45 FC mov byte ptr [ebp-4],al
第一种在读取时直接就把字符串中的元素读到寄存器cl中,而第二种则要先把指针值读到
edx中,再根据edx读取字符,显然慢了。
2.7小结:
堆和栈的区别可以用如下的比喻来看出:
使用栈就象我们去饭馆里吃饭,只管点菜(发出申请)、付钱、和吃(使用),吃饱了就走,不必理会切菜、洗菜等准备工作和洗碗、刷锅等扫尾工作,他的好处是快捷,但是自由度小。
使用堆就象是自己动手做喜欢吃的菜肴,比较麻烦,但是比较符合自己的口味,而且自由度大。 (经典!)
get和post
一、 原理区别
一般在浏览器中输入网址访问资源都是通过GET方式;在FORM提交中,可以通过Method指定提交方式为GET或者POST,默认为GET提交
Http定义了与服务器交互的不同方法,最基本的方法有4种,分别是GET,POST,PUT,DELETE
URL全称是资源描述符,我们可以这样认 为:一个URL地址,它用于描述一个网络上的资源,而HTTP中的GET,POST,PUT,DELETE就对应着对这个资源的查 ,改 ,增 ,删 4个操作。到这里,大家应该有个大概的了解了,GET一般用于获取/查询 资源信息,而POST一般用于更新 资源信息(个人认为这是GET和POST的本质区别,也是协议设计者的本意,其它区别都是具体表现形式的差异 )。
根据HTTP规范,GET用于信息获取,而且应该是安全的和幂等的 。
1.所谓安全的意味着该操作用于获取信息而非修改信息。换句话说,GET请求一般不应产生副作用。就是说,它仅仅是获取资源信息,就像数据库查询一样,不会修改,增加数据,不会影响资源的状态。
* 注意:这里安全的含义仅仅是指是非修改信息。
2.幂等的意味着对同一URL的多个请求应该返回同样的结果。这里我再解释一下幂等 这个概念:
幂等 (idempotent、idempotence)是一个数学或计算机学概念,常见于抽象代数中。
幂等有以下几种定义:
对于单目运算,如果一个运算对于在范围内的所有的一个数多次进行该运算所得的结果和进行一次该运算所得的结果是一样的,那么我们就称该运算是幂等的。比如绝对值运算就是一个例子,在实数集中,有abs(a) =abs(abs(a)) 。
对于双目运算,则要求当参与运算的两个值是等值的情况下,如果满足运算结果与参与运算的两个值相等,则称该运算幂等,如求两个数的最大值的函数,有在在实数集中幂等,即max(x,x) = x 。
看完上述解释后,应该可以理解GET幂等的含义了。
但在实际应用中,以上2条规定并没有这么严格。引用别人文章的例子:比如,新闻站点的头版不断更新。虽然第二次请求会返回不同的一批新闻,该操 作仍然被认为是安全的和幂等的,因为它总是返回当前的新闻。从根本上说,如果目标是当用户打开一个链接时,他可以确信从自身的角度来看没有改变资源即可。
根据HTTP规范,POST表示可能修改变服务器上的资源的请求 。继续引用上面的例子:还是新闻以网站为例,读者对新闻发表自己的评论应该通过POST实现,因为在评论提交后站点的资源已经不同了,或者说资源被修改了。
上面大概说了一下HTTP规范中,GET和POST的一些原理性的问题。但在实际的做的时候,很多人却没有按照HTTP规范去做,导致这个问题的原因有很多,比如说:
1.很多人贪方便,更新资源时用了GET,因为用POST必须要到FORM(表单),这样会麻烦一点。
2.对资源的增,删,改,查操作,其实都可以通过GET/POST完成,不需要用到PUT和DELETE。
3.另外一个是,早期的但是Web MVC框架设计者们并没有有意识地将URL当作抽象的资源来看待和设计 。还有一个较为严重的问题是传统的Web MVC框架基本上都只支持GET和POST两种HTTP方法,而不支持PUT和DELETE方法。
* 简单解释一下MVC:MVC本来是存在于Desktop程序中的,M是指数据模型,V是指用户界面,C则是控制器。使用MVC的目的是将M和V的实现代码分离,从而使同一个程序可以使用不同的表现形式。
以上3点典型地描述了老一套的风格(没有严格遵守HTTP规范),随着架构的发展,现在出现REST(Representational State Transfer),一套支持HTTP规范的新风格,这里不多说了,可以参考《RESTful Web Services》。
二 表现形式区别
搞清了两者的原理区别,我们再来看一下他们实际应用中的区别:
为了理解两者在传输过程中的不同,我们先看一下HTTP协议的格式:
HTTP请求:
<request line>
<headers>
<blank line>
<request-body>]
在HTTP请求中,第一行必须是一个请求行(request line),用来说明请求类型、要访问的资源以及使用的HTTP版本。紧接着是一个首部(header)小节,用来说明服务器要使用的附加信息。在首部之后是一个空行,再此之后可以添加任意的其他数据[称之为主体(body)]。
GET与POST方法实例:
GET /books/?sex=man&name=Professional HTTP/1.1
Host: www.wrox.com
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.7.6)
Gecko/20050225 Firefox/1.0.1
Connection: Keep-Alive
POST / HTTP/1.1
Host: www.wrox.com
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.7.6)
Gecko/20050225 Firefox/1.0.1
Content-Type: application/x-www-form-urlencoded
Content-Length: 40
Connection: Keep-Alive
(----此处空一行----)
name=Professional%20Ajax&publisher=Wiley
有了以上对HTTP请求的了解和示例,我们再来看两种提交方式的区别:
(1)GET提交,请求的数据会附在URL之后(就是把数据放置在请求行(request line)中),以?分割URL和传输数据,多个参数用&连接;例如:login.action?name=hyddd&password=idontknow&verify=%E4%BD%A0 %E5%A5%BD。Url的编码格式采用的是ASCII码,而不是Unicode,这也就是说你不能在Url中包含任何非ASCII字符,所有非ASCII字符均需要编码再传输.
POST提交:把提交的数据放置在是HTTP包的包体中。上文示例中红色字体标明的就是实际的传输数据。
因此,GET提交的数据会在地址栏中显示出来,而POST提交,地址栏不会改变
(2)传输数据的大小:首先声明:HTTP协议没有对传输的数据大小进行限制,HTTP协议规范也没有对URL长度进行限制。
而在实际开发中存在的限制主要有:
GET:特定浏览器和服务器对URL长度有限制,例如IE对URL长度的限制是2083字节(2K+35)。对于其他浏览器,如Netscape、FireFox等,理论上没有长度限制,其限制取决于操作系统的支持。
因此对于GET提交时,传输数据就会受到URL长度的限制。
POST:由于不是通过URL传值,理论上数据不受限。但实际各个WEB服务器会规定对post提交数据大小进行限制,Apache、IIS6都有各自的配置。
(3)安全性:
.POST的安全性要比GET的安全性高。注意:这里所说的安全性和上面GET提到的“安全”不是同个概念。上面“安全”的含义仅仅是不作数据修改,而这 里安全的含义是真正的Security的含义,比如:通过GET提交数据,用户名和密码将明文出现在URL上,因为(1)登录页面有可能被浏览器缓存, (2)其他人查看浏览器的历史纪录,那么别人就可以拿到你的账号和密码了,除此之外,使用GET提交数据还可能会造成Cross-site request forgery攻击
(4)Http get,post,soap协议都是在http上运行的
1)get:请求参数是作为一个key/value对的序列(查询字符串)附加到URL上的
查询字符串的长度受到web浏览器和web服务器的限制(如IE最多支持2048个字符),不适合传输大型数据集同时,它很不安全
2)post:请求参数是在http标题的一个不同部分(名为entity body)传输的,这一部分用来传输表单信息,因此必须将Content-type设置为:application/x-www-form-urlencoded。post设计用来支持web窗体上的用户字段,其参数也是作为key/value对传输。
但是:它不支持复杂数据类型,因为post没有定义传输数据结构的语义和规则。
3)soap:是http post的一个专用版本,遵循一种特殊的xml消息格式
Content-type设置为: text/xml 任何数据都可以xml化
三 HTTP响应
1.HTTP响应格式:
<status line>
<headers>
<blank line>
[<response-body>]
在响应中唯一真正的区别在于第一行中用状态信息代替了请求信息。状态行(status line)通过提供一个状态码来说明所请求的资源情况。
HTTP响应实例:
HTTP/1.1 200 OK
Date: Sat, 31 Dec 2005 23:59:59 GMT
Content-Type: text/html;charset=ISO-8859-1
Content-Length: 122
<html>
<head>
<title>Wrox Homepage</title>
</head>
<body>
<!-- body goes here -->
</body>
</html>
2.最常用的状态码有:
◆200 (OK): 找到了该资源,并且一切正常。
◆304 (NOT MODIFIED): 该资源在上次请求之后没有任何修改。这通常用于浏览器的缓存机制。
◆401 (UNAUTHORIZED): 客户端无权访问该资源。这通常会使得浏览器要求用户输入用户名和密码,以登录到服务器。
◆403 (FORBIDDEN): 客户端未能获得授权。这通常是在401之后输入了不正确的用户名或密码。
◆404 (NOT FOUND): 在指定的位置不存在所申请的资源。
四 完整示例:
例子:
HTTP GET
发送
GET /DEMOWebServices2.8/Service.asmx/CancelOrder?UserID=string&PWD=string&OrderConfirmation=string HTTP/1.1
Host: api.efxnow.com
回复
HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: length
<?xml version="1.0" encoding="utf-8"?>
<objPlaceOrderResponse xmlns="https://api.efxnow.com/webservices2.3">
<Success>boolean</Success>
<ErrorDescription>string</ErrorDescription>
<ErrorNumber>int</ErrorNumber>
<CustomerOrderReference>long</CustomerOrderReference>
<OrderConfirmation>string</OrderConfirmation>
<CustomerDealRef>string</CustomerDealRef>
</objPlaceOrderResponse>
HTTP POST
发送
POST /DEMOWebServices2.8/Service.asmx/CancelOrder HTTP/1.1
Host: api.efxnow.com
Content-Type: application/x-www-form-urlencoded
Content-Length: length
UserID=string&PWD=string&OrderConfirmation=string
回复
HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: length
<?xml version="1.0" encoding="utf-8"?>
<objPlaceOrderResponse xmlns="https://api.efxnow.com/webservices2.3">
<Success>boolean</Success>
<ErrorDescription>string</ErrorDescription>
<ErrorNumber>int</ErrorNumber>
<CustomerOrderReference>long</CustomerOrderReference>
<OrderConfirmation>string</OrderConfirmation>
<CustomerDealRef>string</CustomerDealRef>
</objPlaceOrderResponse>
SOAP 1.2
发送
POST /DEMOWebServices2.8/Service.asmx HTTP/1.1
Host: api.efxnow.com
Content-Type: application/soap+xml; charset=utf-8
Content-Length: length
<?xml version="1.0" encoding="utf-8"?>
<soap12:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:soap12="http://www.w3.org/2003/05/soap-envelope">
<soap12:Body>
<CancelOrder xmlns="https://api.efxnow.com/webservices2.3">
<UserID>string</UserID>
<PWD>string</PWD>
<OrderConfirmation>string</OrderConfirmation>
</CancelOrder>
</soap12:Body>
</soap12:Envelope>
回复
HTTP/1.1 200 OK
Content-Type: application/soap+xml; charset=utf-8
Content-Length: length
<?xml version="1.0" encoding="utf-8"?>
<soap12:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:soap12="http://www.w3.org/2003/05/soap-envelope">
<soap12:Body>
<CancelOrderResponse xmlns="https://api.efxnow.com/webservices2.3">
<CancelOrderResult>
<Success>boolean</Success>
<ErrorDescription>string</ErrorDescription>
<ErrorNumber>int</ErrorNumber>
<CustomerOrderReference>long</CustomerOrderReference>
<OrderConfirmation>string</OrderConfirmation>
<CustomerDealRef>string</CustomerDealRef>
</CancelOrderResult>
</CancelOrderResponse>
</soap12:Body>
</soap12:Envelope>
new和malloc
1,malloc与free是C++/C语言的标准库函数,new/delete是C++的运算符。它们都可用于申请动态内存和释放内存。
2,对于非内部数据类型的对象而言,光用maloc/free无法满足动态对象的要求。对象在创建的同时要自动执行构造函数,对象在消亡之前要自动执行析构函数。由于malloc/free是库函数而不是运算符,不在编译器控制权限之内,不能够把执行构造函数和析构函数的任务强加于malloc/free。
3,因此C++语言需要一个能完成动态内存分配和初始化工作的运算符new,以一个能完成清理与释放内存工作的运算符delete。注意new/delete不是库函数。
4,C++程序经常要调用C函数,而C程序只能用malloc/free管理动态内存。
5、new可以认为是malloc加构造函数的执行。new出来的指针是直接带类型信息的。而malloc返回的都是void指针。
一:new delete 是运算符,malloc,free是函数
malloc与free是C++/C语言的标准库函数,new/delete是C++的运算符。它们都可用于申请动态内存和释放内存。
对于非内部数据类型的对象而言,光用maloc/free无法满足动态对象的要求。对象在创建的同时要自动执行构造函数,对象在消亡之前要自动执行析构函数。由于malloc/free是库函数而不是运算符,不在编译器控制权限之内,不能够把执行构造函数和析构函数的任务强加于malloc/free。
因此C++语言需要一个能完成动态内存分配和初始化工作的运算符new,以及一个能完成清理与释放内存工作的运算符delete。注意new/delete不是库函数。