点赞功能,你用 MySQL 还是 Redis ?

作者:一起web编程

链接:www.toutiao.com/i6825148720728769028

点赞功能是目前app开发基本的功能

今天我们就来聊聊 点赞、评论、收藏等这些场景的db数据库设计问题。

1. 我们先来看看场景的需求:

  • 显示点赞数量
  • 判断用户是否点过赞,用于去重,必须的判断
  • 显示个人点赞列表,一般在用户中心
  • 显示文章点赞列表

我们先看一下头条和微博的例子

image
image

这两个都是具有顶级流量的,后端肯定有复杂的架构,我们今天只谈大众化的方案。

方案

2.1 mysql方案

mysql方案, 随着nosql的流行,大数据的持续热点,但是mysql仍然不可替代,对于大多数的中小项目,低于千万级的数据量,采用mysql分表+cache,是完全可以胜任的,而且稳定性是其他方案无可比拟的:

-- 文章表

create table post {
        post_id int(11) NOT NULL AUTO_INCREMENT,

        ......

        star_num int(11) COMMENT '点赞数量'
}

-- 用户表

create table user {
        user_id int(11) NOT NULL AUTO_INCREMENT,

        ......

        star_num int(11) COMMENT '点赞数量'
}

-- 点赞表

create table star {
        id int(11) NOT NULL AUTO_INCREMENT,

        post_id,

        user_id,

        ......
}

常用的查询:

查询用户点赞过的文章 select post_id from star where user_id=?

查询文章的点赞用户 select user_id from star where post_id=?

点赞数量可以通过定时异步统计更新到post和user 表中。

数据量不大的时候,这种设计基本可以满足需求了。

缺点:

数据量大时,一张表在查询时压力巨大,需要分表,而不论用post_id还是user_id来hash分表都与我们的需求有冲突,唯一的办法就是做两个表冗余。这增加了存储空间和维护工作量,还可能有一致性问题。

2.2 redis方案

当数据量达到上亿的量,上cache是必经的阶段,由于点赞这种动作很随意,很多人看到大拇指就想点,所以数据量增长很快,数据规模上来后,对mysql读写都有很大的压力,这时就要考虑memcache、redis进行存储或cache。

为什么一般都选择redis, redis作为流行的nosql,有着丰富的数据类型,可以适应多个场景的需求。

采用redis有两种用途,一种是storage,一种是纯cache,需要+mysql一起。纯cache就是把数据从mysql先写入redis,用户先读cache,miss后再拉取MySQL,同时cache做同步。

image

多数场景二者是同时使用的,并不冲突。

下面说下redis作为storage的方案:

场景a :显示点赞数量

在点赞的地方,只是显示一个点赞数量,能区分用户是否点赞过,一般用户不关心这个列表,这个场景只要一个数字就可以了,当数量比较大时,一般显示为"7k" ,"10W" 这样。

以文章id为key

//以文章id=888为例 
127.0.0.1:6379[2]> set star:tid:888 898 //设置点赞数量 
OK 
127.0.0.1:6379[2]> incr star:tid:888 //实现数量自增 (integer) 
899

场景b:点赞去重,避免重复点赞

要实现这个需求,必须有文章点赞的uid列表,以uid为key场景c:一般在用户中心,可以看到用户自己的点赞列表

这个需求可以使用场景b的数据来实现。

image

场景d:文章的点赞列表,类似场景b,以文章id为key

//以文章id=888为例 
127.0.0.1:6379[2]> sadd star:list:tid:888 123 456 789  //点赞uid列表 (integer) 
3 
127.0.0.1:6379[2]> sismember star:list:tid:888 456  //判断是否点赞 (integer) 
1

点赞的地方,如果点赞过显示红色,没有则显示黑白色,

今日头条是没有地方可以看到点赞列表的,而微博点进去,详情页可以看到点赞列表,但是只会显示最近的几十条,没有分页显示。

如下图,我选了一条热点,拥有众多粉丝的“猪猪”

image

可能有人觉得,点赞列表没人关心,存储又会浪费大量资源,不如不存!但是,这个数据是必须要有的。两点:

a. 去重。点赞数可以不精确,但去重必须是精确的,

b.另外一个社交产品,用户行为的一点一滴都需要记录,对于后续的用户行为分析和数据挖掘都是有意义的。

上面使用string存储的用户点赞数量,除了string,还可以用hash来存储,对文章id分块,每100个存到一个hash,分别存入hash table,每个文章id为hash的一个key,value存储点赞的用户id,如果点赞用户很多,避免id过多产生性能问题,可以单列出来,用sorted set结构保存,热点的毕竟是少数。

image

方案优缺点比对

hash:使用了更少的全局key ,节省了内存空间;但是也带来了问题

如何根据文章id路由到对应的hash?

查找一个用户id是在hash还是set?存在不确定性

使用hash虽然节省了空间,但增加了复杂度,如何选择就看个人需求了。

除此之外,你还有其他的方法吗?

3. 数据一致性

redis作为storage使用时,一定要做好数据的持久化,必须开启 rdb 和 aof,这会导致业务只能使用一半的机器内存,所以要做好容量的监控,及时扩容。

另外只要有数据copy,就会有一致性问题,这就是另外一个很重要的话题了。以后有时间再细聊吧!

写在最后:把问题写明白,真不是一件容易的事情,请大家多多关注,留言,谢谢!

前几天写的一篇文章,受到众多同行的热情回复,能和众多同行一起交流,深感荣幸!对于工程类问题,没有标准的方案,一千个人有一千个方案,哪个最适合你只有你自己知道!期待你更好的思路和方法。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,172评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,346评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,788评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,299评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,409评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,467评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,476评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,262评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,699评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,994评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,167评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,827评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,499评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,149评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,387评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,028评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,055评论 2 352