快速开始

快速开始

本指南帮助初学者学习如何:
在测试环境中安装并运行Elasticsearch
向Elasticsearch添加数据
搜索和排序数据
在搜索期间从非结构化内容中提取字段

步骤1 执行 Elasticsearch 命令

建立Elasticsearch最简单的方法是在弹性云上使用Elasticsearch Service创建托管部署。如果您喜欢管理自己的测试环境,可以使用Docker安装并运行Elasticsearch

Install and run Elasticsearch

1.  Install and start [Docker Desktop](https://www.docker.com/products/docker-desktop).
2.  Run:
      docker network create elastic
      docker pull docker.elastic.co/elasticsearch/elasticsearch:7.13.2
      docker run --name es01-test --net elastic -p 9200:9200 -p 9300:9300 -e "discovery.type=single-node" 
      docker.elastic.co/elasticsearch/elasticsearch:7.13.2

Install and run Kibana

To analyze, visualize, and manage Elasticsearch data using an intuitive UI, install Kibana.
1.  In a new terminal session, run:
docker pull docker.elastic.co/kibana/kibana:7.13.2
docker run --name kib01-test --net elastic -p 5601:5601 -e "ELASTICSEARCH_HOSTS=http://es01-test:9200" docker.elastic.co/kibana/kibana:7.13.2
2.  To access Kibana, go to [http://localhost:5601](http://localhost:5601/)

步骤2 向Elasticsearch发送请求

您使用REST api向Elasticsearch发送数据和其他请求。这允许您使用任何发送HTTP请求的客户端(比如curl)与Elasticsearch进行交互。您还可以使用Kibana的控制台向Elasticsearch发送请求

Use curl

To submit an example API request, run the following curl command in a new terminal session.
curl -X GET http://localhost:9200/

Use Kibana

    1. Open Kibana’s main menu and go to Dev Tools > Console.
kibana-console.png
    1. Run the following example API request in the console:
 GET /

步骤3 添加数据

您将数据作为称为文档的JSON对象添加到Elasticsearch中。Elasticsearch将这些文档存储在可搜索的索引中。

对于时间序列数据(如日志和度量),通常将文档添加到由多个自动生成的支持索引组成的数据流中。

数据流需要一个与其名称匹配的索引模板。Elasticsearch使用这个模板来配置流的后台索引。发送到数据流的文档必须有@timestamp字段。

添加一个单独的文档

提交以下索引请求,将单个日志条目添加到logs-my_app-default数据流中。因为logs-my_app-default不存在,请求自动使用内置的logs--索引模板创建它

POST logs-my_app-default/_doc
{
  "@timestamp": "2099-05-06T16:21:15.000Z",
  "event": {
    "original": "192.0.2.42 - - [06/May/2099:16:21:15 +0000] \"GET /images/bg.jpg HTTP/1.0\" 200 24736"
  }
}

响应包含了Elasticsearch为文档生成的元数据:

  • 包含文档的backing _index。Elasticsearch自动生成支持索引的名称。
  • 索引内文档的唯一_id。
{
  "_index": ".ds-logs-my_app-default-2099-05-06-000001",
  "_type": "_doc",
  "_id": "gl5MJXMBMk1dGnErnBW8",
  "_version": 1,
  "result": "created",
  "_shards": {
    "total": 2,
    "successful": 1,
    "failed": 0
  },
  "_seq_no": 0,
  "_primary_term": 1
}

添加多个文件

使用_bulk端点在一个请求中添加多个文档。批量数据必须是新行分隔的JSON (NDJSON)。每一行必须以换行符(\n)结尾,包括最后一行。

PUT logs-my_app-default/_bulk
{ "create": { } }
{ "@timestamp": "2099-05-07T16:24:32.000Z", "event": { "original": "192.0.2.242 - - [07/May/2020:16:24:32 -0500] \"GET /images/hm_nbg.jpg HTTP/1.0\" 304 0" } }
{ "create": { } }
{ "@timestamp": "2099-05-08T16:25:42.000Z", "event": { "original": "192.0.2.255 - - [08/May/2099:16:25:42 +0000] \"GET /favicon.ico HTTP/1.0\" 200 3638" } }

步骤4 搜索数据

建立了索引的文档可用于近乎实时的搜索。下面的搜索将匹配logs-my_app-default中的所有日志条目,并按@timestamp按降序对它们进行排序。

GET logs-my_app-default/_search
{
  "query": {
    "match_all": { }
  },
  "sort": [
    {
      "@timestamp": "desc"
    }
  ]
}

默认情况下,响应的命中部分最多包括匹配搜索的前10个文档。每次命中的_source都包含在索引期间提交的原始JSON对象。

{
  "took": 2,
  "timed_out": false,
  "_shards": {
    "total": 1,
    "successful": 1,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": {
      "value": 3,
      "relation": "eq"
    },
    "max_score": null,
    "hits": [
      {
        "_index": ".ds-logs-my_app-default-2099-05-06-000001",
        "_type": "_doc",
        "_id": "PdjWongB9KPnaVm2IyaL",
        "_score": null,
        "_source": {
          "@timestamp": "2099-05-08T16:25:42.000Z",
          "event": {
            "original": "192.0.2.255 - - [08/May/2099:16:25:42 +0000] \"GET /favicon.ico HTTP/1.0\" 200 3638"
          }
        },
        "sort": [
          4081940742000
        ]
      },
      ...
    ]
  }
}
获得特定字段

对于大型文档,解析整个_source非常笨拙。要从响应中排除它,请将_source参数设置为false。相反,使用fields参数来检索所需的字段。

GET logs-my_app-default/_search
{
  "query": {
    "match_all": { }
  },
  "fields": [
    "@timestamp"
  ],
  "_source": false,
  "sort": [
    {
      "@timestamp": "desc"
    }
  ]
}

响应以平面数组的形式包含每个命中的字段值。

{
  ...
  "hits": {
    ...
    "hits": [
      {
        "_index": ".ds-logs-my_app-default-2099-05-06-000001",
        "_type": "_doc",
        "_id": "PdjWongB9KPnaVm2IyaL",
        "_score": null,
        "fields": {
          "@timestamp": [
            "2099-05-08T16:25:42.000Z"
          ]
        },
        "sort": [
          4081940742000
        ]
      },
      ...
    ]
  }
}
搜索日期范围

如果要跨时间段或IP范围进行搜索,请使用范围查询。

GET logs-my_app-default/_search
{
  "query": {
    "range": {
      "@timestamp": {
        "gte": "2099-05-05",
        "lt": "2099-05-08"
      }
    }
  },
  "fields": [
    "@timestamp"
  ],
  "_source": false,
  "sort": [
    {
      "@timestamp": "desc"
    }
  ]
}

您可以使用日期数学来定义相对时间范围。下面的查询搜索过去一天的数据,它不会匹配logs-my_app-default中的任何日志条目

GET logs-my_app-default/_search
{
  "query": {
    "range": {
      "@timestamp": {
        "gte": "now-1d/d",
        "lt": "now/d"
      }
    }
  },
  "fields": [
    "@timestamp"
  ],
  "_source": false,
  "sort": [
    {
      "@timestamp": "desc"
    }
  ]
}
从非结构化内容中提取字段

You can extract runtime fields from unstructured content, such as log messages, during a search.

Use the following search to extract the source.ip runtime field from event.original. To include it in the response, add source.ip to the fields parameter.

GET logs-my_app-default/_search
{
  "runtime_mappings": {
    "source.ip": {
      "type": "ip",
      "script": """
        String sourceip=grok('%{IPORHOST:sourceip} .*').extract(doc[ "event.original" ].value)?.sourceip;
        if (sourceip != null) emit(sourceip);
      """
    }
  },
  "query": {
    "range": {
      "@timestamp": {
        "gte": "2099-05-05",
        "lt": "2099-05-08"
      }
    }
  },
  "fields": [
    "@timestamp",
    "source.ip"
  ],
  "_source": false,
  "sort": [
    {
      "@timestamp": "desc"
    }
  ]
}
组合查询

可以使用bool查询组合多个查询。下面的搜索组合了两个范围查询:一个在@timestamp上,一个在源上。ip运行时。

GET logs-my_app-default/_search
{
  "runtime_mappings": {
    "source.ip": {
      "type": "ip",
      "script": """
        String sourceip=grok('%{IPORHOST:sourceip} .*').extract(doc[ "event.original" ].value)?.sourceip;
        if (sourceip != null) emit(sourceip);
      """
    }
  },
  "query": {
    "bool": {
      "filter": [
        {
          "range": {
            "@timestamp": {
              "gte": "2099-05-05",
              "lt": "2099-05-08"
            }
          }
        },
        {
          "range": {
            "source.ip": {
              "gte": "192.0.2.0",
              "lte": "192.0.2.240"
            }
          }
        }
      ]
    }
  },
  "fields": [
    "@timestamp",
    "source.ip"
  ],
  "_source": false,
  "sort": [
    {
      "@timestamp": "desc"
    }
  ]
}
聚合数据

使用聚合将数据总结为指标、统计数据或其他分析。
下面的搜索使用聚合来计算使用http.response.body.bytes运行时字段的average_response_size。聚合只在与查询匹配的文档上运行。

GET logs-my_app-default/_search
{
  "runtime_mappings": {
    "http.response.body.bytes": {
      "type": "long",
      "script": """
        String bytes=grok('%{COMMONAPACHELOG}').extract(doc[ "event.original" ].value)?.bytes;
        if (bytes != null) emit(Integer.parseInt(bytes));
      """
    }
  },
  "aggs": {
    "average_response_size":{
      "avg": {
        "field": "http.response.body.bytes"
      }
    }
  },
  "query": {
    "bool": {
      "filter": [
        {
          "range": {
            "@timestamp": {
              "gte": "2099-05-05",
              "lt": "2099-05-08"
            }
          }
        }
      ]
    }
  },
  "fields": [
    "@timestamp",
    "http.response.body.bytes"
  ],
  "_source": false,
  "sort": [
    {
      "@timestamp": "desc"
    }
  ]
}

响应的聚合对象包含聚合结果

{
  ...
  "aggregations" : {
    "average_response_size" : {
      "value" : 12368.0
    }
  }
}

Explore more search options

To keep exploring, index more data to your data stream and check out Common search options.

步骤5. 清理

完成后,删除测试数据流及其备份索引

DELETE _data_stream/logs-my_app-default
  1. To stop your Elasticsearch and Kibana Docker containers, run:
docker stop es01-test
docker stop kib01-test
  1. To remove the containers and their network, run:
docker network rm elastic
docker rm es01-test
docker rm kib01-test

What’s next?

©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容