FPGA和CPU的优势

姓名:谢瑞

学号:19011210366

转载自:https://mp.weixin.qq.com/s/VXkqXODn2z0oWmdSlOnjlg

【嵌牛导读】FPGA和CPU在处理数据方面的不同点决定了各自的优势所在,实践中需要根据需求来选择合适的器件。

【嵌牛鼻子】FPGA    CPU

【嵌牛提问】FPGA和CPU的优缺点是什么?

【嵌牛正文】

CPU和GPU都属于冯·诺依曼结构,指令译码执行,共享内存。FPGA之所以比CPU、GPU更快,本质上是因为其无指令,无共享内存的体系结构所决定的。

冯氏结构中,由于执行单元可能执行任意指令,就需要有指令存储器、译码器、各种指令的运算器、分支跳转处理逻辑。而FPGA的每个逻辑单元的功能在重编程时就已经确定,不需要指令。


冯氏结构中使用内存有两种作用:①保存状态。②执行单元间的通信。

1)保存状态:FPGA中的寄存器和片上内存(BRAM)是属于各自的控制逻辑的,无需不必要的仲裁和缓存。

2)通信需求:FPGA每个逻辑单元与周围逻辑单元的连接在重编程时就已经确定了,并不需要通过共享内存来通信。

计算密集型任务中:

在数据中心,FPGA相比GPU的核心优势在于延迟。FPGA为什么比GPU的延迟低很多?本质上是体系结构的区别。FPGA同时拥有流水线并行和数据并行,而GPU几乎只有数据并行(流水线深度受限)。

处理一个数据包有10个步骤,FPGA可以搭建一个10级流水线,流水线的不同级在处理不同的数据包,每个数据包流经10级之后处理完成。每个处理完成的数据包可以马上输出。而GPU的数据并行方法是做10个计算单元,每个计算单元也在处理不同的数据包,但是所有的计算单元必须按照统一的步调,做相同的事情(SIMD)。这就要求10个数据包必须同进同出。当任务是逐个而非成批到达的时候,流水线并行比数据并行可实现更低的延迟。因此对流水式计算的任务,FPGA比GPU天生有延迟方面的优势。

ASIC在吞吐量、延迟、功耗单个方面都是最优秀的。但是其研发成本高,周期长。FPGA的灵活性可以保护资产。数据中心是租给不同租户使用的。有的机器上有神经网络加速卡,有的有bing搜索加速卡,有的有网络虚拟加速卡,任务的调度和运维会很麻烦。使用FPGA可以保持数据中心的同构性。

通信密集型任务中,FPGA相比GPU、CPU的优势更大。

①吞吐量:FPGA可以直接接上40Gbps或者100Gbps的网线,以线速处理任意大小的数据包;而CPU则需要网卡把数据包接收过来;GPU也可以高性能处理数据包,但GPU没有网口,同样需要网卡,这样吞吐量受到网卡和(或)者CPU的限制。

②延迟:网卡把数据传给CPU,CPU处理后传给网卡,再加上系统中的时钟中断和任务调度增加了延迟的不稳定性。

综上所述,在数据中心里 FPGA 的主要优势是稳定又极低的延迟,适用于流式的计算密集型任务和通信密集型任务。

FPGA 和 GPU 最大的区别在于体系结构,FPGA 更适合做需要低延迟的流式处理,GPU 更适合做大批量同构数据的处理。

成也萧何,败也萧何。缺少指令同时是 FPGA 的优势和软肋。每做一点不同的事情,就要占用一定的 FPGA 逻辑资源。如果要做的事情复杂、重复性不强,就会占用大量的逻辑资源,其中的大部分处于闲置状态。这时就不如用冯·诺依曼结构的处理器。

FPGA 和 CPU 协同工作,局部性和重复性强的归 FPGA,复杂的归 CPU。

总结与体会:FPGA和CPU属于在不同的思想方式下产生出的器件,处理能力各有其优势所在,FPGA适合并行处理,基于硬件电路处理速度快,而CPU擅长在同构模式下的批量数据处理,使用软件编程的方式,处理的灵活性高,但由于软件执行的单步串行特点,执行速度较慢,希望以后能发展出综合两者优点的计算机器。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,634评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,951评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,427评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,770评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,835评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,799评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,768评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,544评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,979评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,271评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,427评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,121评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,756评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,375评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,579评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,410评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,315评论 2 352

推荐阅读更多精彩内容