信息检索排序算法 LambdaRank 和 LambdaMART

排序算法在搜索引擎中非常重要,需要根据用户的查询 q,对一些相关的文档进行排序,尽可能地让用户感兴趣的文档排在前面。之前的文章介绍了一种 Learning to rank 的算法 RankNet,现在介绍另外两种比较经典的排序模型 LambdaRank 和 lambdaMART。

1.RankNet 的问题

信息检索排序问题常用的评价指标有 NDCG、ERR 等,不熟悉的童鞋可以看下之前的文章《信息检索评价指标》,这些评价指标是不平滑不连续的,无法直接用于梯度下降。RankNet 算法将排序问题转成一个概率问题,使用神经网络计算出一篇文章排在另一篇文章之前的概率,使用交叉熵作为损失函数,最后用梯度下降进行求解。

RankNet 的损失函数如下所示,本质上是计算样本的 pairwise error,即减少排序出错的样本数量,注意下式中 σ 是一个参数。

RankNet 的损失函数

由于 RankNet 优化的是 pairwise error,因此会存在一些问题,我们先看下图。

RankNet 存在的问题

在上图中包含 16 个文档,其中蓝色表示相关的文档,灰色表示不相关的文档。左图中 pairwise error 的个数为 13 (即第二个蓝色文档前有 13 个不相关文档),而右图 pairwise error 的个数为 11。RankNet 在优化时关注于文档对的错误,可能会出现有图的结果,但是很多时候这并不是理想的。

很多评价指标,例如 NDCG 和 ERR 等更加关注的时 top k 个结果的排序,因此优化过程中把相关文档往下调并不合适。

另外一点,右边的图中的黑色箭头表示 RankNet 下一次优化时调整的方向和梯度大小 (箭头越长梯度越大)。但是我们真正需要的是右边的红色箭头,即排名越靠前的文档梯度应该越大。因此微软提出了 LambdaRank。

2.LambdaRank

LambdaRank 是在 RankNet 基础上修改的,首先对 RankNet 的损失函数进行分解,得到其中的梯度。分解公式如下所示,wk 表示神经网络模型的参数。

lambda 可以表示梯度的强度,lambda 可以进一步化简,假设对于训练集里面的文档对 (i, j),都有文档 i 排在文档 j 之前,即 Sij = 1,则 lambda 可以如下简化。

LambdaRank 主要创新点在于不直接定义模型的损失函数再求梯度,而是通过分析 RankNet 排序损失函数的梯度再直接对梯度 lambda 进行修改。

考虑到 NDCG、ERR 等指标不能直接求梯度,因此 LambdaRank 直接修改梯度 lambda,从而引入评价指标的信息,使梯度能够接近评价指标的表现。论文中的做法是交换两个文档 i,j 的位置,然后计算评价指标的变化情况 |ΔZ|,把 |ΔZ| 做为 lambda 的因子。Z 可以是 NDCG 等评价指标。

通过梯度 lambda 也可以反推出 LambdaRank 的损失函数,如下。

3.LambdaMART

LambdaMART 是一种结合了 LambdaRank 和 MART 的算法。MART 算法是一种集成学习算法,全称是 Multiple Additive Regression Tree,也称为梯度提升树 GBDT。MART 算法中每一棵树都是串联的关系,每棵树优化的是上一次分类器的残差。

3.1 MART 分类

对于样本 x,MART 预测的结果为 F(x),另 P+ 和 P- 分别表示模型预测正例和负例的概率,I+ 和 I- 表示真实的类标,如果 I+ = 1 (I- = 0),则表示正例;如果 I+ = 0 (I- = 1),则表示负例。可以定义交叉熵损失函数。

MART 每棵树拟合的是当前的负梯度,如下:

Rjm 表示第 m 棵树的第 j 个叶子节点包含的所有样本,则该叶子节点的取值可以如下计算,最小化对应的损失函数。对应的 gamma 值就是叶子节点的取值。

最终叶子节点的取值可以用牛顿迭代法求解,公式如下,具体推导过程可以参考论文《From RankNet to LambdaRank to LambdaMART: An Overview》。

3.2 LambdaMART

LambdaMART 结合了 LambdaRank 和 MART,LambdaRank 中推导出 lambda 的公式

对应的损失函数如下。

可以求出损失函数的一阶导数和二阶导数

第 m 棵树的第 k 个叶子节点的取值用下面的公式进行计算。

算法的伪代码如下图所示

4.参考文献

  • 《From RankNet to LambdaRank to LambdaMART: An Overview》
  • 《Adapting Boosting for Information Retrieval Measures》
  • 《Learning to Rank with Nonsmooth Cost Functions》
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,657评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,662评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,143评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,732评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,837评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,036评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,126评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,868评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,315评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,641评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,773评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,859评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,584评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,676评论 2 351

推荐阅读更多精彩内容