来源:知行阿明
语音特征信号识别是语音识别研究领域中的一个重要方面,一般采用模式匹配的原理解决。语音识别的运算过程为:首先,待识别语音转化为电信号后输入识别系统,经过预处理,用数学方法提取语音特征信号,提取出的语音特征信号可以看成该段语音的模式;然后将该段语音模型同已知参考模式相比较,获得最佳匹配的参考模式为该段语音的识别结果。语音识别流程图如下图1所示。
对于民歌、古筝、摇滚和流行四类不同音乐,本文将用BP神经网络实现对这四类音乐的有效分类。每段音乐都用倒谱系数法提取500组24维语音特征信号,提取出的语音特征如下图2所示。
模型建立
基于BP神经网络的语音特征信号分类算法建模包括BP神经网络构建、训练和分类三步,算法流程如下图3所示。
BP神经网络构建根据系统输入输出数据特点确定BP神经网络的结构,由于语音特征输入信号有24维,待分类信号共有四类,所以BP神经网络的结构为24-25-4,即输入层有24个节点。隐含层有25个节点,输出层有4个节点。
BP神经网络用训练数据训练。共2000组语音特征信号,从中随机选择1500组数据作为训练数据训练网络,500组数据作为测试数据测试网络分类能力。
用训练好的神经网络对测试数据所属语音类别进行分类。
MATLAB实现
1、数据选择和归一化
%% 清空环境变量
clc
clear
%% 训练数据预测数据提取及归一化
%下载四类语音信号
load data1 c1
load data2 c2
load data3 c3
load data4 c4
%四个特征信号矩阵合成一个矩阵
data(1:500,:)=c1(1:500,:);
data(501:1000,:)=c2(1:500,:);
data(1001:1500,:)=c3(1:500,:);
data(1501:2000,:)=c4(1:500,:);
%从1到2000间随机排序
k=rand(1,2000);
[m,n]=sort(k);
%输入输出数据
input=data(:,2:25);
output1 =data(:,1);
%把输出从1维变成4维
output=zeros(2000,4);
for i=1:2000
switch output1(i)
case 1
output(i,:)=[1 0 0 0];
case 2
output(i,:)=[0 1 0 0];
case 3
output(i,:)=[0 0 1 0];
case 4
output(i,:)=[0 0 0 1];
end
end
%随机提取1500个样本为训练样本,500个样本为预测样本
input_train=input(n(1:1500),:)';
output_train=output(n(1:1500),:)';
input_test=input(n(1501:2000),:)';
output_test=output(n(1501:2000),:)';
%输入数据归一化
[inputn,inputps]=mapminmax(input_train);
2、BP神经网络结构初始化
根据语音特征信号特点确定BP神经网络结构为24-25-4,随机初始化BP神经网络的权值和阈值。
%% 网络结构初始化
innum=24;
midnum=25;
outnum=4;
%权值初始化
w1=rands(midnum,innum);
b1=rands(midnum,1);
w2=rands(midnum,outnum);
b2=rands(outnum,1);
w2_1=w2;w2_2=w2_1;
w1_1=w1;w1_2=w1_1;
b1_1=b1;b1_2=b1_1;
b2_1=b2;b2_2=b2_1;
%学习率
xite=0.1;
alfa=0.01;
loopNumber=10;
I=zeros(1,midnum);
Iout=zeros(1,midnum);
FI=zeros(1,midnum);
dw1=zeros(innum,midnum);
db1=zeros(1,midnum);
3、BP神经网络训练
用随机选取的1500组数据训练BP神经网络,在训练过程中根据网络预测误差调整网络的权值和阈值。
%% 网络训练
E=zeros(1,loopNumber);
for ii=1:loopNumber
E(ii)=0;
for i=1:1:1500
%% 网络预测输出
x=inputn(:,i);
% 隐含层输出
for j=1:1:midnum
I(j)=inputn(:,i)'*w1(j,:)'+b1(j);
Iout(j)=1/(1+exp(-I(j)));
end
% 输出层输出
yn=w2'*Iout'+b2;
%% 权值阀值修正
%计算误差
e=output_train(:,i)-yn;
E(ii)=E(ii)+sum(abs(e));
%计算权值变化率
dw2=e*Iout;
db2=e';
for j=1:1:midnum
S=1/(1+exp(-I(j)));
FI(j)=S*(1-S);
end
for k=1:1:innum
for j=1:1:midnum
dw1(k,j)=FI(j)*x(k)*(e(1)*w2(j,1)+e(2)*w2(j,2)+e(3)*w2(j,3)+e(4)*w2(j,4));
db1(j)=FI(j)*(e(1)*w2(j,1)+e(2)*w2(j,2)+e(3)*w2(j,3)+e(4)*w2(j,4));
end
end
w1=w1_1+xite*dw1';
b1=b1_1+xite*db1';
w2=w2_1+xite*dw2';
b2=b2_1+xite*db2';
w1_2=w1_1;w1_1=w1;
w2_2=w2_1;w2_1=w2;
b1_2=b1_1;b1_1=b1;
b2_2=b2_1;b2_1=b2;
end
end
4、BP神经网络分类
用训练好的BP神经网络分类语音特征信号,根据分类结果分析BP神经网络的分类能力。
%% 语音特征信号分类
inputn_test=mapminmax('apply',input_test,inputps);
fore=zeros(4,500);
for ii=1:1
for i=1:500%1500
%隐含层输出
for j=1:1:midnum
I(j)=inputn_test(:,i)'*w1(j,:)'+b1(j);
Iout(j)=1/(1+exp(-I(j)));
end
fore(:,i)=w2'*Iout'+b2;
end
end
%% 结果分析
%根据网络输出找出数据属于哪类
output_fore=zeros(1,500);
for i=1:500
output_fore(i)=find(fore(:,i)==max(fore(:,i)));
end
%BP网络预测误差
error=output_fore-output1(n(1501:2000))';
%画出预测语音种类和实际语音种类的分类图
figure(1)
plot(output_fore,'r')
hold on
plot(output1(n(1501:2000))','b')
legend('预测语音类别','实际语音类别')
%画出误差图
figure(2)
plot(error)
title('BP网络分类误差','fontsize',12)
xlabel('语音信号','fontsize',12)
ylabel('分类误差','fontsize',12)
%print -dtiff -r600 1-4
k=zeros(1,4);
%找出判断错误的分类属于哪一类
for i=1:500
if error(i)~=0
[b,c]=max(output_test(:,i));
switch c
case 1
k(1)=k(1)+1;
case 2
k(2)=k(2)+1;
case 3
k(3)=k(3)+1;
case 4
k(4)=k(4)+1;
end
end
end
%找出每类的个体和
kk=zeros(1,4);
for i=1:500
[b,c]=max(output_test(:,i));
switch c
case 1
kk(1)=kk(1)+1;
case 2
kk(2)=kk(2)+1;
case 3
kk(3)=kk(3)+1;
case 4
kk(4)=kk(4)+1;
end
end
%正确率
rightridio=(kk-k)./kk;
disp('正确率')
disp(rightridio);
结果分析
用训练好的BP神经网络分类语音特征信号测试数据,BP神经网络的分类误差如下图4所示。
BP网络的分类正确率如下表1所示
语音信号识别 | 第一类 | 第二类 | 第三类 | 第四类 |
---|---|---|---|---|
识别正确率 | 0.9478 | 1.0000 | 0.4173 | 0.9134 |
从BP神经网络分类结果可以看出,基于BP网络的语音信号分类算法具有较高的准确性,能够准确识别出语音信号所属类别。
总结
本文采用的是最基本的BP神经网络,可以发现准确性还有提高空间,而且多次运行分类算法后会发现第一类和第三类的识别准确率非常不稳定,从而算法还可以改进,常用的改进方法有:调整隐含层节点数、附加动量法(权值和阈值更新算法)、变学习率学习算法等等。