【转载】mysql和hbase应用场景对比

当我们对于数据结构字段不够确定或杂乱无章很难按一个概念去进行抽取的数据适合用使用什么数据库?答案是什么,如果我们使用的传统数据库,肯定留有多余的字段,10个不行,20个,但是这个严重影响了质量。并且如果面对大数据库,pt级别的数据,这种浪费更是严重的,那么我们该使用是什么数据库?hbase数个不错的选择,那么我们对于hbase还存在下列问题:
1.Column Family代表什么?
2.HBase通过row和column确定一份数据,这份数据的值可能有多个版本,为什么会存在多个版本?
3.查询的时候会显示那个版本?
4.它们的存储类型是什么?
5.tableName是什么类型?
6.RowKey 和 ColumnName是什么类型?
7.Timestamp 是什么类型?

8.value 是什么类型?

带着以上几个问题去读下面内容:

引言

团队中使用HBase的项目多了起来,对于业务人员而言,通常并不需要从头搭建、维护一套HBase的集群环境,对于其架构细节也不一定要深刻理解(交由HBase集群维护团队负责),迫切需要的是快速理解基本技术来解决业务问题。最近在XX项目轮岗过程中,尝试着从业务人员视角去看HBase,将一些过程记录下来,期望对快速了解HBase、掌握相关技术来开展工作的业务人员有点帮助。我觉得作为一个初次接触HBase的业务开发测试人员,他需要迫切掌握的至少包含以下几点:
深入理解HTable,掌握如何结合业务设计高性能的HTable

掌握与HBase的交互,反正是离不开数据的增删改查,通过HBase Shell命令及Java Api都是需要的

掌握如何用MapReduce分析HBase里的数据,HBase里的数据总要分析的,用MapReduce是其中一种方式

掌握如何测试HBase MapReduce,总不能光写不管正确性吧,debug是需要的吧,看看如何在本机单测debug吧

本系列将围绕以上几点展开,篇幅较长,如果是HBase初学者建议边读边练,对于HBase比较熟练的,可以选读下,比如关注下HBase的MapReduce及其测试方法。

从一个示例说起

传统的关系型数据库想必大家都不陌生,我们将以一个简单的例子来说明使用RDBMS和HBase各自的解决方式及优缺点。
以博文为例,RDBMS的表设计如下:

image

为了方便理解,我们以一些数据示例下


image

上面的例子,我们用HBase可以按以下方式设计


image

同样为了方便理解,我们以一些数据示例下,同时用红色标出了一些关键概念,后面会解释


image

HTable一些基本概念

Row key

行主键, HBase不支持条件查询和Order by等查询,读取记录只能按Row key(及其range)或全表扫描,因此Row key需要根据业务来设计以利用其存储排序特性(Table按Row key字典序排序如1,10,100,11,2)提高性能。

Column Family(列族)

在表创建时声明,每个Column Family为一个存储单元。在上例中设计了一个HBase表blog,该表有两个列族:article和author。
Column(列)

HBase的每个列都属于一个列族,以列族名为前缀,如列article:title和article:content属于article列族,author:name和author:nickname属于author列族。
Column不用创建表时定义即可以动态新增,同一Column Family的Columns会群聚在一个存储单元上,并依Column key排序,因此设计时应将具有相同I/O特性的Column设计在一个Column Family上以提高性能。同时这里需要注意的是:这个列是可以增加和删除的,这和我们的传统数据库很大的区别。所以他适合非结构化数据。 Timestamp

HBase通过row和column确定一份数据,这份数据的值可能有多个版本,不同版本的值按照时间倒序排序,即最新的数据排在最前面,查询时默认返回最新版本。如上例中row key=1的author:nickname值有两个版本,分别为1317180070811对应的“一叶渡江”和1317180718830对应的“yedu”(对应到实际业务可以理解为在某时刻修改了nickname为yedu,但旧值仍然存在)。Timestamp默认为系统当前时间(精确到毫秒),也可以在写入数据时指定该值。
Value

每个值通过4个键唯一索引,tableName+RowKey+ColumnKey+Timestamp=>value,例如上例中{tableName=’blog’,RowKey=’1’,ColumnName=’author:nickname’,Timestamp=’ 1317180718830’}索引到的唯一值是“yedu”。

存储类型

TableName 是字符串
RowKey 和 ColumnName 是二进制值(Java 类型 byte[])
Timestamp 是一个 64 位整数(Java 类型 long)
value 是一个字节数组(Java类型 byte[])。

存储结构

可以简单的将HTable的存储结构理解为


image

即HTable按Row key自动排序,每个Row包含任意数量个Columns,Columns之间按Column key自动排序,每个Column包含任意数量个Values。理解该存储结构将有助于查询结果的迭代。

话说什么情况需要HBase

半结构化或非结构化数据

对于数据结构字段不够确定或杂乱无章很难按一个概念去进行抽取的数据适合用HBase。以上面的例子为例,当业务发展需要存储author的email,phone,address信息时RDBMS需要停机维护,而HBase支持动态增加.

记录非常稀疏

RDBMS的行有多少列是固定的,为null的列浪费了存储空间。而如上文提到的,HBase为null的Column不会被存储,这样既节省了空间又提高了读性能。

多版本数据

如上文提到的根据Row key和Column key定位到的Value可以有任意数量的版本值,因此对于需要存储变动历史记录的数据,用HBase就非常方便了。比如上例中的author的Address是会变动的,业务上一般只需要最新的值,但有时可能需要查询到历史值。

超大数据量

当数据量越来越大,RDBMS数据库撑不住了,就出现了读写分离策略,通过一个Master专门负责写操作,多个Slave负责读操作,服务器成本倍增。随着压力增加,Master撑不住了,这时就要分库了,把关联不大的数据分开部署,一些join查询不能用了,需要借助中间层。随着数据量的进一步增加,一个表的记录越来越大,查询就变得很慢,于是又得搞分表,比如按ID取模分成多个表以减少单个表的记录数。经历过这些事的人都知道过程是多么的折腾。采用HBase就简单了,只需要加机器即可,HBase会自动水平切分扩展,跟Hadoop的无缝集成保障了其数据可靠性(HDFS)和海量数据分析的高性能(MapReduce)。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,874评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,102评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,676评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,911评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,937评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,935评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,860评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,660评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,113评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,363评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,506评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,238评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,861评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,486评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,674评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,513评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,426评论 2 352

推荐阅读更多精彩内容