股票分析--(预测2)

我们看看黄文鑫详解经验法PID参数调节:

经验法整定PID参数是几十年经验的积累,到现在仍得到广泛应用的一种PID参数整定方法。此法是根据生产操作经验,再结合调节过程的过渡过程曲线形状,对控制系统的调节器参数进行反复的凑试,最后得到调节器的最佳参数。

这是一首流传广泛、影响很大的调节器PID参数调节口诀,该PID调节口诀最早出现在1973年11月出版的《化工自动化》一书中,流传至今已有几十年了。现在网上流传的PID调节口诀,大多是以该PID参数调节口诀作为蓝本进行了补充和改编而来的,如“曲线振荡频率快,先把微分降下来,动差大来波动慢。微分时间应加长”。还有的加了“理想曲线两个波,前高后低四比一,一看二调多分析,调节质量不会低”等。为便于理解和应用,现对该PID参数调节口诀进行较详细的分析。以下的分析及结论对临界比例度法、衰减曲线法也是有参考价值的。

先谈谈PID参数调节口诀“参数整定寻最佳,从大到小顺次查”中的“最佳”问题。很多仪表工都有这样的体会,在现场的调节器工程参数整定中,如果只按4:1衰减比进行整定,那么可以有很多对的比例度和积分时间同样能满足4:1的衰减比,但是这些对的数值并不是任意地组合,而是成对地,一定的比例度必须与一定的积分时间组成一对,才能满足衰减比的条件,改变其中之一,另一个也要随之改变。因为是成对出现的,所以才有调节器参数的“匹配”问题。而在实际应用中只有增加个附加条件,才能从多对数值中选出一对适合的值。这一对适合的值通常称为“最佳整定值”。“从大到小顺次查”中“查”的意思就是找到调节器参数的最佳匹配值。而“从大到小顺次査”"是说在具体操作时,先把比例度、积分时间放至最大位置,把微分时间调至零。因为需要的是衰减振荡的过渡过程,并避免出现其他的振荡过程,在整定初期,把比例度放至最大位置,目的是减小调节器的放大倍数。而积分放至最大位置,目的是先把积分作用取消。把微分时间调至零也是把微分作用取消了。“从大到小顺次查”就是从大到小改变比例度或积分时间刻度,实质是慢慢地增加比例作用或积分作用的放大倍数。也就是慢慢增加比例或积分作用的影响,避免系统出现大的振荡。最后再根据系统实际情况决定是否使用微分作用。

“先是比例后积分,最后再把微分加”是经验法的整定步骤。比例作用是最基本的控制作用,PID参数调节口诀说的“先是比例后积分”,目的是简化调节器的参数整定,即先把积分作用取消和弱化,待系统较稳定后再投运积分作用。尤其是新安装的控制系统,对系统特性不了解时,我们要做的就是先把积分作用取消,待调整好比例度,使控制系统大致稳定以后,再加入积分作用。对于比例控制系统,如果规定4:1的衰减过渡过程,则只有一个比例度能满足这一规定,而其他的任何比例度都不可能使过渡过程的衰减比为4:1。因此,对比例控制系统只要找到能满足4:1衰减比时的比例度就行了。

在调好比例控制的基础上再加入积分作用,但积分会降低过渡过程的衰减比,则系统的稳定程度也会降低。为了保持系统的稳定程度,可增大调节器的比例度,即减小调节器的放大倍数。这就是在整定中投入积分作用后,要把比例度增大10%-20%的原因。其实质就是个比例度和积分时间数值的匹配问题,在一定范围内比例度的减小,是可以用增加积分时间的方法来补偿的,但也要看到比例作用和积分作用是互为影响的,如果设置的比例度过大时,即便积分时间恰当,系统控制效果仍然会不佳。

在有的场合,也可不强求以上步骤,而是采取先按表1的PID参数凑试范围,把比例度、积分、微分时间选择好,然后由大到小的改变比例度进行凑试,直至调节过程曲线满意为止。积分时间和微分时间预置后用比例度凑试,其体现的是经验,如果没有经验就成为盲目调试了。此方法的缺点是当同时使用比例、积分、微分三作用时,不容易找到最合适的整定参数,由于反复凑试会费很多时间。

“曲线振荡很频繁,比例度盘要放大”说的是比例度过小时,会产生周期较短的激烈振荡,如图1所示。且振荡衰减很慢,严重时至会成为发散振荡。这时就要调大比例度,使曲线平缓下来。、


图1  比例度过小时的过渡过程曲线  

“曲线漂浮绕大弯,比例度盘往小扳”说的是比例度过大时会使过渡时间过长,使被调参数变化缓慢,即记录曲线偏离给定值幅值较大,时间较长,这时曲线波动较大且变化无规则,形状像绕大弯式的变化,如图2所示。这时就要减小比例度,使余差尽量小。


图2  比例度过大时的过渡过程曲线   

“曲线偏离回复慢,积分时间往下降。曲线波动周期长,积分时间再加长”说的是积分作用的整定方法。当积分时间太长时,会使曲线非周期地慢慢地回复到给定值,即“曲线偏离回复慢”,如图3所示。则应减少积分时间。当积分时间太短时,会使曲线振荡周期较长,且衰减很慢,即“曲线波动周期长”,如图4所示。则应加长积分时间。


图3  积分时间太长时的过渡过程曲线


图4  积分时间太长时的过渡过程曲线  

调节器的参数按比例积分作用整定好后,如果需启用微分作用时,则“最后再把微分加”。由于微分作用会增强系统的稳定性,故使用微分作用后,调节器的比例度可以在原来的基础上再增大一些,一般以增大20%为宜。微分作用主要用于滞后和惯性较大的场合,由于微分作用具有超前调节的功能,当系统有较大滞后或较大惯性的情况下,才应启用微分作用。

以上说的是孤立的调试方法,在实际调试中,由于比例、积分、微分作用的相互影响,所以要互相兼顾才能调试好。要掌握的是振荡过强则应加大比例度,加大积分时间;恢复过慢则应减小比例度,减小积分时间。加入微分作用后,要把比例度和积分时间在原有的基础上减小一些;通过调微分时间的凑试,使过渡时间最短,超调量最小。

②过程曲线的观察

经验法的实质就是看曲线,调参数。现在使用的DCS功能强大,想观察什么曲线就可观察什么曲线,只要把测点引入DCS即可,非常方便。但以前由于条件所限,当时用得最多的是气动三针记录仪,还有电子电位差计记录仪。口诀中所说“过程曲线”大多指仪表的记录曲线,通常要设置较快的走纸速度和选择合适的量程,才有可能较好地观察到记录曲线。有的对象由于调节过程较快,从记录曲线读出衰减过渡过程是很困难的,只能凭经验观察,如调节器的风压或电流来回波动两次就达到稳定状态时,就可认为是n:1的衰减过渡过程。口诀中所说的过程曲线形状,是形象化、直观化、被放大了的曲线,其目的是为了便于理解。

③振荡周期和频率

过渡过程从一个波峰到第二个波峰之间的时间叫振荡周期,一个振荡周期是360°;振荡周期的倒数称为振荡频率。在衰减比相同的条件下,周期与过渡时间成正比,通常希望周期短一些为好,但各种被控对象的振荡周期相差是很大的,且周期的长短取决于所整定的对象,及不同的整定参数。口诀所说的“理想曲线两个波”,指的是在过渡时间内被调参数振荡的次数,如果说过渡过程振荡两次就能稳定下来,这就是很好的过渡过程。引入振荡周期和频率的概念是为了理论上分析问题的方便,与交流电的波形和频率相比,两者差别是很大的;过程控制的振荡周期是极缓慢的,大多长达数分钟至数十分钟,动次数而已。

④关于衰减比

在多数情况下,都希望得到衰减振荡的过渡过程,衡量衰减程度的指标是衰减比,即图5中B与B'两峰值的比,通常表示为n:1,一般n在4-10之间较妥。口诀中说4:1的衰减过渡过程好,是如何定出来的?这其实是工艺操作人员多年的经验总结。因为在生产现场投用自控系统的时候,被控工艺参数在受到干扰和调节器的校正后,能比较快地达到一个高峰值。然后又马上下降并较快地达到一个低峰值。如果工艺操作人员看到这样的曲线,心里就比较踏实,他知道被调工艺参数再振荡几次就会稳定下来了,是不会出现大的超调现象的。但是如果过渡过程是非振荡的过程,则工艺操作人员在较长的时间内只看到过程曲线在一直上升或下降,操作人员害怕出事故的心理,就会促使他调动相应地阀门改变工艺物料的大小以求指标稳定,由于人为的干扰会导致被调参数大大偏离给定值,这一恶性循环严重时,可能会使系统处于不可控制的状态,所以说选择衰减振荡的过渡过程,并规定衰减比在4-10:1之间,是根据工艺操作人员的实践经验得来的。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,744评论 6 502
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,505评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,105评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,242评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,269评论 6 389
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,215评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,096评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,939评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,354评论 1 311
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,573评论 2 333
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,745评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,448评论 5 344
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,048评论 3 327
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,683评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,838评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,776评论 2 369
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,652评论 2 354