linux驱动:[2]字符设备驱动memdev
Linux 内存模拟字符设备 驱动程序
测试平台: Xunlong Orange Pi Zero
代码一览(解析见下方)
驱动程序以及Makefile如下:
- memdev.c:
#include <linux/module.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/errno.h>
#include <linux/mm.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/cdev.h>
#include <asm/io.h>
#include <linux/slab.h>
#include <asm/uaccess.h>
#ifndef MEMDEV_MAJOR
#define MEMDEV_MAJOR 254
#endif
#ifndef MEMDEV_NR_DEVS
#define MEMDEV_NR_DEVS 2
#endif
#ifndef MEMDEV_SIZE
#define MEMDEV_SIZE 4096
#endif
struct mem_dev {
char *data;
unsigned long size;
};
static int mem_major = MEMDEV_MAJOR;
module_param(mem_major, int, S_IRUGO);
struct mem_dev *mem_devp;
struct cdev cdev;
int mem_open(struct inode *inode, struct file *filp)
{
struct mem_dev *dev;
int num = MINOR(inode->i_rdev);
if (num >= MEMDEV_NR_DEVS)
return -ENODEV;
dev = &mem_devp[num];
filp->private_data = dev;
return 0;
}
int mem_release(struct inode *inode, struct file *filp)
{
return 0;
}
static ssize_t mem_read(struct file *filp, char __user *buf, size_t size, loff_t *poss)
{
unsigned long p = *poss;
unsigned int count = size;
int ret = 0;
struct mem_dev *dev = filp->private_data;
if (p >= MEMDEV_SIZE)
return 0;
if (count > MEMDEV_SIZE-p)
count = MEMDEV_SIZE-p;
if(copy_to_user(buf, (void*)(dev->data + p), count)) {
ret = -EFAULT;
} else {
*poss += count;
ret = count;
printk(KERN_INFO "read %d bytes from %lu\n", count, p);
}
return ret;
}
static ssize_t mem_write(struct file *filp, const char __user *buf, size_t size, loff_t *poss)
{
unsigned long p = *poss;
unsigned int count = size;
int ret = 0;
struct mem_dev *dev = filp->private_data;
if (p >= MEMDEV_SIZE)
return 0;
if (count > MEMDEV_SIZE-p)
count = MEMDEV_SIZE - p;
if (copy_from_user(dev->data + p, buf, count)) {
ret = -EFAULT;
} else {
*poss += count;
ret = count;
printk(KERN_INFO "write %d bytes from %lu\n", count, p);
}
return ret;
}
static loff_t mem_llseek(struct file *filp, loff_t offset, int whence)
{
loff_t newpos;
switch (whence) {
case 0:
newpos = offset;
break;
case 1:
newpos = filp->f_pos + offset;
break;
case 2:
newpos = MEMDEV_SIZE - 1 + offset;
break;
default:
return -EINVAL;
}
if ((newpos < 0) || (newpos > MEMDEV_SIZE))
return -EINVAL;
filp->f_pos = newpos;
return newpos;
}
static const struct file_operations mem_fops =
{
.owner = THIS_MODULE,
.llseek = mem_llseek,
.read = mem_read,
.write = mem_write,
.open = mem_open,
.release = mem_release,
};
static int memdev_init(void)
{
int result;
int i;
dev_t devno = MKDEV(mem_major, 0);
if (mem_major)
result = register_chrdev_region(devno, 2, "memdev");
else {
result = alloc_chrdev_region(&devno, 0, 2, "memdev");
mem_major = MAJOR(devno);
}
if (result < 0)
return result;
cdev_init(&cdev, &mem_fops);
cdev.owner = THIS_MODULE;
cdev.ops = &mem_fops;
cdev_add(&cdev, MKDEV(mem_major, 0), MEMDEV_NR_DEVS);
mem_devp = kmalloc(MEMDEV_NR_DEVS * sizeof(struct mem_dev), GFP_KERNEL);
if (!mem_devp) {
result = -ENOMEM;
goto fail_malloc;
}
memset(mem_devp, 0, MEMDEV_NR_DEVS * sizeof(struct mem_dev));
for (i = 0; i < MEMDEV_NR_DEVS; i++) {
mem_devp[i].size = MEMDEV_SIZE;
mem_devp[i].data = kmalloc(MEMDEV_SIZE, GFP_KERNEL);
memset(mem_devp[i].data, 0, MEMDEV_SIZE);
}
printk("memdev init success\n");
return 0;
fail_malloc:
unregister_chrdev_region(devno, 2);
return result;
}
static void memdev_exit(void)
{
cdev_del(&cdev);
kfree(mem_devp);
unregister_chrdev_region(MKDEV(mem_major, 0), 2);
printk("memdev exit success\n");
}
MODULE_AUTHOR("Ziping Chen <techping.chan@gmail.com>");
MODULE_LICENSE("GPL");
module_init(memdev_init);
module_exit(memdev_exit);
- Makefile:
obj-m := memdev.o #编译进模块
KERNELDIR := /lib/modules/4.11.0-rc4-00064-g89970a0-dirty/build #此处为linux内核库目录
PWD := $(shell pwd) #获取当前目录
OUTPUT := $(obj-m) $(obj-m:.o=.ko) $(obj-m:.o=.mod.o) $(obj-m:.o=.mod.c) modules.order Module.symvers
modules:
$(MAKE) -C $(KERNELDIR) M=$(PWD) modules
clean:
rm -rf $(OUTPUT)
在shell中使用以下命令装载驱动程序:
<font color="red">(这里以主设备号为181进行测试)</font>
$ make
$ insmod memdev.ko mem_major=181
$ mknod /dev/memdev0 c 181 0
使用linux c进行测试:
- memapp.c:
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <string.h>
int main()
{
int fd;
char buf[4096];
strcpy(buf,"memory simulate char device test...\n");
printf("original buf:%s\n",buf);
fd = open("/dev/memdev0",O_RDWR);
if (fd == -1) {
printf("open memdev failed!\n");
return -1;
}
write(fd, buf, sizeof(buf));
lseek(fd, 0, SEEK_SET);
strcpy(buf, "nothing here");
read(fd, buf, sizeof(buf));
printf("read buf:%s\n", buf);
return 0;
}
进行编译、测试:
$ gcc -o memapp memapp.c
实验成功!
代码解析:
一、分配设备号
if (mem_major)
result = register_chrdev_region(devno, 2, "memdev");
else {
result = alloc_chrdev_region(&devno, 0, 2, "memdev");
mem_major = MAJOR(devno);
}
如果定义的参数mem_major不为0(上面测试用了181),则进行静态分配
register_chrdev_region(devno, 2, "memdev");//静态分配设备号为devno的设备
如果mem_major为0则进行动态分配
alloc_chrdev_region(&devno, 0, 2, "memdev");//动态分配主设备号为devno,次设备号为0的设备
二、初始化cdev结构
/linux/include/linux/cdev.h:
struct cdev {
struct kobject kobj;//每个 cdev 都是一个 kobject
struct module *owner;//指向实现驱动的模块
const struct file_operations *ops;//操纵这个字符设备文件的方法
struct list_head list;//与 cdev 对应的字符设备文件的 inode->i_devices 的链表头
dev_t dev;//起始设备编号
unsigned int count;//设备范围号大小
};
一个 cdev 一般它有两种定义初始化方式:静态的和动态的。
静态内存定义初始化:
struct cdev my_cdev;
cdev_init(&my_cdev, &fops);
my_cdev.owner = THIS_MODULE;
动态内存定义初始化:
struct cdev *my_cdev = cdev_alloc();
my_cdev->ops = &fops;
my_cdev->owner = THIS_MODULE;
两种使用方式的功能是一样的,只是使用的内存区不一样,一般视实际的数据结构需求而定。
源码分析:
struct cdev *cdev_alloc(void)
{
struct cdev *p = kzalloc(sizeof(struct cdev), GFP_KERNEL);
if (p) {
INIT_LIST_HEAD(&p->list);
kobject_init(&p->kobj, &ktype_cdev_dynamic);
}
return p;
}
void cdev_init(struct cdev *cdev, const struct file_operations *fops)
{
memset(cdev, 0, sizeof *cdev);
INIT_LIST_HEAD(&cdev->list);
kobject_init(&cdev->kobj, &ktype_cdev_default);
cdev->ops = fops;
}
可见,两个函数完成都功能基本一致。
三、添加cdev
初始化 cdev 后,需要把它添加到系统中去。为此可以调用 cdev_add() 函数。传入 cdev 结构的指针,起始设备编号,以及设备编号范围。
int cdev_add(struct cdev *p, dev_t dev, unsigned count)
{
p->dev = dev;
p->count = count;
return kobj_map(cdev_map, dev, count, NULL, exact_match, exact_lock, p);
}
简单地说,设备驱动程序通过调用cdev_add把它所管理的设备对象的指针嵌入到一个类型为struct probe的节点之中,然后再把该节点加入到cdev_map所实现的哈希链表中。
对系统而言,当设备驱动程序成功调用了cdev_add之后,就意味着一个字符设备对象已经加入到了系统,在需要的时候,系统就可以找到它。对用户态的程序而言,cdev_add调用之后,就已经可以通过文件系统的接口调用到我们的驱动程序。
四、卸载cdev
当一个字符设备驱动不再需要的时候(比如模块卸载),就可以用 cdev_del() 函数来释放 cdev 占用的内存。
void cdev_del(struct cdev *p)
{
cdev_unmap(p->dev, p->count);
kobject_put(&p->kobj);
}
其中 cdev_unmap() 调用 kobj_unmap() 来释放 cdev_map 散列表中的对象。kobject_put() 释放 cdev 结构本身。
- 我的个人主页:http://www.techping.cn/
- 我的个人站点博客:http://www.techping.cn/blog/wordpress/
- 我的CSDN博客:http://blog.csdn.net/techping
- 我的简书:http://www.jianshu.com/users/b2a36e431d5e/timeline
- 我的GitHub:https://github.com/techping
欢迎相互follow~