[face_recognition中文文档] 第4节 Face Recognition API

Face Recognition API


face_recognition.api.batch_face_locations(images, number_of_times_to_upsample=1, batch_size=128)

源码

使用cnn面部检测器返回图像中二维人脸的边界框数组,如果您正在使用GPU,这可以更快的给您结果,因为GPU可以一次处理批次的图像。如果您不使用GPU,则不需要此功能。

参数:
  • images - 图像列表(每个作为numpy数组)
  • number_of_times_to_upsample - 用于对图像进行采样的次数。较高的数字找到较小的脸。
  • batch_size - 每个GPU处理批次中包含的图像数量。
返回:

一个可以在css(上,右,下,左)顺序中找到的人脸位置的元组列表


face_recognition.api.compare_faces(known_face_encodings, face_encoding_to_check, tolerance=0.6)

源码

将候选编码的面部编码列表进行比较,以查看它们是否匹配。

参数:
  • known_face_encodings - 已知面部编码的列表
  • face_encoding_to_check - 与已知面部编码的列表进行比较的单面编码
  • tolerance - 面孔之间的距离要考虑多少。越小越严格, 0.6是典型的最佳性能。
返回:

一个True / False值的列表,指出哪个known_face_encodings匹配要检查的面部编码


face_recognition.api.face_distance(face_encodings, face_to_compare)

源码

给出面部编码列表,将其与已知的面部编码进行比较,并为每个比较的人脸获得欧几里得距离。距离告诉你面孔是如何相似的。

参数:
  • face_encodings - 要比较的面部编码列表
  • face_to_compare - 要比较的面部编码
返回:

一个numpy ndarray,每个面的距离与“faces”数组的顺序相同


face_recognition.api.face_encodings(face_image, known_face_locations=None, num_jitters=1)

源码

给定图像,返回图像中每个面部的128维面部编码。

参数:
  • face_image - 包含一个或多个面的图像
  • known_face_locations - 可选 - 如果您已经知道它们,每个面的边框。
  • num_jitters - 计算编码时重新采样多少次。更高更准确,但更慢(即100是100倍慢)
返回:

128个面部编码的列表(图像中的每个脸部一个)


face_recognition.api.face_landmarks(face_image, face_locations=None)

源码

给定图像,返回图像中每个脸部的脸部特征位置(眼睛,鼻子等)的指令

参数:
  • face_image - 要搜索的图像
  • face_locations - 可选地提供要检查的面部位置的列表。
返回:

面部特征位置(眼睛,鼻子等)的列表


face_recognition.api.face_locations(img, number_of_times_to_upsample=1, model='hog')

源码

返回图像中人脸的边框数组

参数:
  • img - 一个图像(作为一个numpy数组)
  • number_of_times_to_upsample - 用于对图像进行上采样的次数多少次。较高的数字找到较小的脸。
  • model - 要使用的面部检测模型。“hog”在CPU上不太准确,但速度更快。“cnn”是一个更准确的深入学习模式,GPU / CUDA加速(如果可用)。默认为“hog”。
返回:

一个可以在css(上,右,下,左)顺序中找到的表面位置的元组列表


face_recognition.api.load_image_file(file, mode='RGB')

源码

将图像文件(.jpg,.png等)加载到numpy数组中

参数:
  • file - 要加载的图像文件名或文件对象
  • mode - 将图像转换为格式。只支持“RGB”(8位RGB,3声道)和“L”(黑白)。
返回:

图像内容为numpy数组


最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,992评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,212评论 3 388
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,535评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,197评论 1 287
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,310评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,383评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,409评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,191评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,621评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,910评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,084评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,763评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,403评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,083评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,318评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,946评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,967评论 2 351

推荐阅读更多精彩内容