OpenGL ES-光照计算(代码实现)

顶点着色器代码

#version 300 es

layout(location = 0) in vec3 position;  //顶点
layout(location = 1) in vec3 normal;    //法向量
layout(location = 2) in vec2 texCoord;  //纹理坐标

uniform mat4 view;
uniform mat4 projection;

out vec3 outNormal; //法向量
out vec3 FragPo;    //顶点在世界坐标位置
out vec2 outTexCoord;//纹理坐标

void main()
{

    FragPo = position;
    outNormal = normal;
    outTexCoord = texCoord;
    gl_Position = projection * view * vec4(position,1.0);
    
}

片元着色器代码

#version 300 es

precision mediump float;
out vec4 FragColor;

uniform vec3 lightColor;    //光源颜色
uniform vec3 lightPo;       //光源位置
uniform vec3 viewPo;        //视角位置
uniform sampler2D Texture;          //物体纹理
uniform sampler2D specularTexture;  //镜面纹理

in vec2 outTexCoord;    //纹理坐标
in vec3 outNormal;      //顶点法向量
in vec3 FragPo;         //顶点坐标

点光源版本

void pointLight(){
    
    float ambientStrength = 0.3;    //环境因子
    float specularStrength = 2.0;   //镜面强度
    float reflectance = 256.0;      //反射率

    float constantPara = 1.0f;     //距离衰减常量
    float linearPara = 0.09f;      //线性衰减常量
    float quadraticPara = 0.032f;  //二次衰减常量

    //环境光 = 环境因子 * 物体的材质颜色
    vec3 ambient = ambientStrength * texture(Texture,outTexCoord).rgb;

    //漫反射
    vec3 norm = normalize(outNormal);
    //当前顶点 至 光源的的单位向量
    vec3 lightDir = normalize(lightPo - FragPo);
    //DiffuseFactor=光源与法线夹角 max(0,dot(N,L))
    float diff = max(dot(norm,lightDir),0.0);
    //漫反射光颜色计算 = 光源的漫反射颜色 * 物体的漫发射材质颜色 * DiffuseFactor
    vec3 diffuse = diff * lightColor*texture(Texture,outTexCoord).rgb;

    //镜面反射
    vec3 viewDir = normalize(viewPo - FragPo);
    // reflect (genType I, genType N),返回反射向量
    vec3 reflectDir = reflect(-lightDir,outNormal);
    //SpecularFactor = power(max(0,dot(N,H)),shininess)
    float spec = pow(max(dot(viewDir, reflectDir),0.0),reflectance);
    //镜面反射颜色 = 光源的镜面光的颜色 * 物体的镜面材质颜色 * SpecularFactor
    vec3 specular = specularStrength * spec * texture(specularTexture,outTexCoord).rgb;

    //衰减因子计算
    float LFDistance = length(lightPo - FragPo);
    //衰减因子 =  1.0/(距离衰减常量 + 线性衰减常量 * 距离 + 二次衰减常量 * 距离的平方)
    float lightWeakPara = 1.0/(constantPara + linearPara * LFDistance + quadraticPara * (LFDistance*LFDistance));
    
    //光照颜色 =(环境颜色 + 漫反射颜色 + 镜面反射颜色)* 衰减因子
    vec3 res = (ambient + diffuse + specular)*lightWeakPara;

    //最终输出的颜色
    FragColor = vec4(res,1.0);

}

平行光版本

void parallelLight(){
  
    float ambientStrength = 0.3;    //环境因子
    float specularStrength = 2.0;   //镜面强度
    float reflectance = 256.0;      //反射率

    //平行光方向
    vec3 paraLightDir = normalize(vec3(-0.2,-1.0,-0.3));

    //环境光 = 环境因子 * 物体的材质颜色
    vec3 ambient = ambientStrength * texture(Texture,outTexCoord).rgb;

    //漫反射
    vec3 norm = normalize(outNormal);
    //当前顶点至光源的的单位向量
    vec3 lightDir = normalize(lightPo - FragPo);
    //DiffuseFactor=光源与paraLightDir 平行光夹角 max(0,dot(N,L))
    float diff = max(dot(norm,paraLightDir),0.0);
    //漫反射光颜色计算 = 光源的漫反射颜色 * 物体的漫发射材质颜色 * DiffuseFactor
    vec3 diffuse = diff * lightColor * texture(Texture,outTexCoord).rgb;

    //镜面反射
    vec3 viewDir = normalize(viewPo - FragPo);
    // reflect (genType I, genType N),返回反射向量 -paraLightDir平行光
    vec3 reflectDir = reflect(-paraLightDir,outNormal);
    //SpecularFactor = power(max(0,dot(N,H)),shininess)
    float spec = pow(max(dot(viewDir, reflectDir),0.0),reflectance);
    //镜面反射颜色 = 光源的镜面光的颜色 * 物体的镜面材质颜色 * SpecularFactor
    vec3 specular = specularStrength * spec * texture(specularTexture,outTexCoord).rgb;

    //距离衰减常量
    float constantPara = 1.0f;
    //线性衰减常量
    float linearPara = 0.09f;
    //二次衰减常量
    float quadraticPara = 0.032f;
    //衰减因子计算
    float LFDistance = length(lightPo - FragPo);
    //衰减因子 =  1.0/(距离衰减常量 + 线性衰减常量 * 距离 + 二次衰减常量 * 距离的平方)
    float lightWeakPara = 1.0/(constantPara + linearPara * LFDistance + quadraticPara * (LFDistance*LFDistance));

    //光照颜色 =(环境颜色 + 漫反射颜色 + 镜面反射颜色)* 衰减因子
    vec3 res = (ambient + diffuse + specular)*lightWeakPara;
    
    //最终输出的颜色
    FragColor = vec4(res,1.0);
}

聚光版本

void Spotlight(){
   
    float ambientStrength = 0.3;    //环境因子
    float specularStrength = 2.0;   //镜面强度
    float reflectance = 256.0;      //反射率

    //环境光 = 环境因子 * 物体的材质颜色
    vec3 ambient = ambientStrength * texture(Texture,outTexCoord).rgb;

    //漫反射
    vec3 norm = normalize(outNormal);
    vec3 lightDir = normalize(lightPo - FragPo);    //当前顶点 至 光源的的单位向量
    //DiffuseFactor=光源与paraLightDir lightDir夹角 max(0,dot(N,L))
    float diff = max(dot(norm,lightDir),0.0);   //光源与法线夹角
    //漫反射光颜色计算 = 光源的漫反射颜色 * 物体的漫发射材质颜色 * DiffuseFactor
    vec3 diffuse = diff * lightColor*texture(Texture,outTexCoord).rgb;

    //镜面反射
    vec3 viewDir = normalize(viewPo - FragPo);
     // reflect (genType I, genType N),返回反射向量
    vec3 reflectDir = reflect(-lightDir,outNormal);
    //SpecularFactor = power(max(0,dot(N,H)),shininess)
    float spec = pow(max(dot(viewDir, reflectDir),0.0),reflectance);
    //镜面反射颜色 = 光源的镜面光的颜色 * 物体的镜面材质颜色 * SpecularFactor
    vec3 specular = specularStrength * spec * texture(specularTexture,outTexCoord).rgb;

    float constantPara = 1.0f;    //距离衰减常量
    float linearPara = 0.09f;     //线性衰减常量
    float quadraticPara = 0.032f; //二次衰减常量
    
    //衰减因子计算
    float LFDistance = length(lightPo - FragPo);
    //衰减因子 =  1.0/(距离衰减常量 + 线性衰减常量 * 距离 + 二次衰减常量 * 距离的平方)
    float lightWeakPara = 1.0/(constantPara + linearPara * LFDistance + quadraticPara * (LFDistance*LFDistance));

    //聚光灯切角 (一些复杂的计算操作 应该让CPU做,提高效率,不变的量也建议外部传输,避免重复计算)
    float inCutOff = cos(radians(10.0f));
    float outCutOff = cos(radians(15.0f));
    vec3 spotDir = vec3(-1.2f,-1.0f,-2.0f);
    
    //聚光灯因子 = clamp((外环的聚光灯角度cos值 - 当前顶点的聚光灯角度cos值)/(外环的聚光灯角度cos值- 内环聚光灯的角度的cos值),0,1);
    float theta = dot(lightDir,normalize(-spotDir));
    //(外环的聚光灯角度cos值- 内环聚光灯的角度的cos值)
    float epsilon  = inCutOff - outCutOff;
    //(外环的聚光灯角度cos值 - 当前顶点的聚光灯角度cos值) / (外环的聚光灯角度cos值- 内环聚光灯的角度的cos值)
    float intensity = clamp((theta - outCutOff)/epsilon,0.0,1.0);
    vec3 res = (ambient + diffuse + specular)*intensity*lightWeakPara;

    FragColor = vec4(res,1.0);
}

GLKit层部分核心代码

设置VBO

// 顶点坐标/法线坐标/纹理坐标
glGenBuffers(1, &VBO);
glBindBuffer(GL_ARRAY_BUFFER, VBO);
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);
    
glEnableVertexAttribArray(0);
glEnableVertexAttribArray(1);
glEnableVertexAttribArray(2);
    
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8*sizeof(float), (void*)NULL);
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 8*sizeof(float), (void*)(3*sizeof(float)));
glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 8*sizeof(float), (void*)(6*sizeof(float)));

渲染

glEnable(GL_DEPTH_TEST);

glClearColor(1.0, 0.0, 0.0, 1.0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glViewport(0, 0, self.frame.size.width, self.frame.size.height);

//光照颜色->片元/顶点着色器
glUniform3f(glGetUniformLocation(program, "lightColor"), 1.0f, 1.0f, 1.0f);

//投影矩阵->顶点着色器
float aspect = (float)self.bounds.size.width / (float)self.bounds.size.height;
GLKMatrix4 projectionMatrix =  GLKMatrix4MakePerspective(GLKMathRadiansToDegrees(45.0f), aspect, 0.1f, 800.0f) ;
glUniformMatrix4fv(glGetUniformLocation(program, "projection"), 1, GL_FALSE, (GLfloat*)projectionMatrix.m);


//模型视图矩阵-->顶点着色器
float radius = 10.0f;
float camX = sin(CACurrentMediaTime()) * radius;
float camZ = cos(CACurrentMediaTime()) * radius;
GLKVector3 viewPo = {camX,camX,camZ};
//获取世界坐标系去模型矩阵中.
/*
 LKMatrix4 GLKMatrix4MakeLookAt(float eyeX, float eyeY, float eyeZ,
 float centerX, float centerY, float centerZ,
 float upX, float upY, float upZ)
 等价于 OpenGL 中
 void gluLookAt(GLdouble eyex,GLdouble eyey,GLdouble eyez,GLdouble centerx,GLdouble centery,GLdouble centerz,GLdouble upx,GLdouble upy,GLdouble upz);
 
 目的:根据你的设置返回一个4x4矩阵变换的世界坐标系坐标。
 参数1:眼睛位置的x坐标
 参数2:眼睛位置的y坐标
 参数3:眼睛位置的z坐标
 第一组:就是脑袋的位置
 
 参数4:正在观察的点的X坐标
 参数5:正在观察的点的Y坐标
 参数6:正在观察的点的Z坐标
 第二组:就是眼睛所看物体的位置
 
 参数7:摄像机上向量的x坐标
 参数8:摄像机上向量的y坐标
 参数9:摄像机上向量的z坐标
 第三组:就是头顶朝向的方向(因为你可以头歪着的状态看物体)
 */

GLKMatrix4 view1 = GLKMatrix4MakeLookAt(camX,camX,camZ,0,0,0,0,1,0);
view1 = GLKMatrix4Scale(view1, 5.0f, 5.0f, 5.0f);
glUniformMatrix4fv(glGetUniformLocation(program, "view"), 1, GL_FALSE, (GLfloat *)view1.m);

//光源位置
glUniform3f(glGetUniformLocation(program, "lightPo"), lightPo.x, lightPo.y, lightPo.z);

//观察者位置
glUniform3f(glGetUniformLocation(program, "viewPo"), viewPo.x, viewPo.y, viewPo.z);

glDrawArrays(GL_TRIANGLES, 0, 36);
[context presentRenderbuffer:GL_RENDERBUFFER];
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

相关阅读更多精彩内容

友情链接更多精彩内容