MongoDB MapReduce

MapReduce 使用JavaScript作为“查询语言”。因此它能够表达
任意复杂的逻辑。然而,这种强大是有代价的:MapReduce非常慢,
不应该实时的数据分析中

MapReduce能够在多态服务器之间并行执行。它会将一个大问题分隔为多个小
问题,将各个小问题发送到不同的机器上,每台机器只负责完成一部分工作。
所有机器都完成时,将这些零碎的解决方案合并称为一个完整的解决方案。

MapReduce 需要几个步骤。

  • 映射(map)
    将操作映射到集合中的每个文档。这个操作要么“无作为”,要么“产生一些键和X个值”。

  • 洗牌(shuffle)
    按照键分组,并将产生的键值组成列表放到对应的键中。

  • 化简(reduce)
    把列表中的值化简成一个单值。这个值被返回,然后接着进行洗牌,直到每个键的列表只有
    一个值为止,这个值也就是最终的结果。

创造基础数据

  for(var i=0; i< 100; i++){
    db.t.insert(
      {
         _id: i,
         "name": "user_"+i,
         "age" : NumberInt(Math.random() * 10)
         })
  }
  > db.t.find()
  { "_id" : 0, "name" : "user_0", "age" : 5 }
  { "_id" : 1, "name" : "user_1", "age" : 9 }
  { "_id" : 2, "name" : "user_2", "age" : 8 }
  { "_id" : 3, "name" : "user_3", "age" : 4 }
  { "_id" : 4, "name" : "user_4", "age" : 0 }
  { "_id" : 5, "name" : "user_5", "age" : 7 }
  { "_id" : 6, "name" : "user_6", "age" : 3 }
  { "_id" : 7, "name" : "user_7", "age" : 8 }
  { "_id" : 8, "name" : "user_8", "age" : 7 }
  { "_id" : 9, "name" : "user_9", "age" : 8 }
  { "_id" : 10, "name" : "user_10", "age" : 9 }
  { "_id" : 11, "name" : "user_11", "age" : 3 }
  { "_id" : 12, "name" : "user_12", "age" : 8 }
  { "_id" : 13, "name" : "user_13", "age" : 0 }
  { "_id" : 14, "name" : "user_14", "age" : 7 }
  { "_id" : 15, "name" : "user_15", "age" : 8 }
  { "_id" : 16, "name" : "user_16", "age" : 4 }
  { "_id" : 17, "name" : "user_17", "age" : 7 }
  { "_id" : 18, "name" : "user_18", "age" : 5 }
  { "_id" : 19, "name" : "user_19", "age" : 2 }
  Type "it" for more

统计age相同的名字

var map = function(){
  emit(this.age, this.name);
};

var reduce = function(key, values){
  var ret={ age: key, names: values };
  return ret;
};

var finalize = function(key, rval){
  if(key == 0){
    rval.msg = "a new life, baby!";
  }
  return rval;
};

db.runCommand({
  mapreduce: "t",
  map: map,
  reduce: reduce,
  finalize: finalize,
  out: "t_age_names"
});


> db.t_age_names.findOne({ _id: 0 })
{
    "_id" : 0,
    "value" : {
        "age" : 0,
        "names" : [
            "user_4",
            "user_13",
            "user_27",
            "user_30",
            "user_48",
            "user_55",
            "user_59",
            "user_63",
            "user_64",
            "user_67",
            "user_70",
            "user_74",
            "user_75",
            "user_95"
        ],
        "msg" : "a new life, baby!"
    }
};

age为0 的数据个数为14个。

> db.t_age_names.findOne({ _id: 1 })
{
    "_id" : 1,
    "value" : {
        "age" : 1,
        "names" : [
            "user_25",
            "user_28",
            "user_32",
            "user_54",
            "user_61",
            "user_85"
        ]
    }
}

age为1的数据个数为6个。

> db.t_age_names.findOne({ _id: 9 })
{
    "_id" : 9,
    "value" : {
        "age" : 9,
        "names" : [
            "user_1",
            "user_10",
            "user_40",
            "user_78",
            "user_97"
        ]
    }
}

age 为9的数据个数为5个。

检测 age 相同的个数

  var count_map = function(){
    emit(this.age, 1);
  };

  var count_reduce = function(key, values){
    total = 0;
    for(var i in  values ){
      total += 1;
    }
    return { age: key, total: total }
  };

  db.runCommand({
    mapreduce: "t",
    map: count_map,
    reduce: count_reduce,
    out: "t_age_count"
  });

  {
    "result" : "t_age_count",
    "timeMillis" : 5,
    "counts" : {
        "input" : 100,
        "emit" : 100,
        "reduce" : 10,
        "output" : 10
    },
    "ok" : 1
  }

input 其中input 表示发送到map函数的文档个数。
emit 在map函数中emit 被调用的次数。
output 结果集合中的文档数量。

最终统计结果如下

  > db.t_age_count.find()
  { "_id" : 0, "value" : { "age" : 0, "total" : 14 } }
  { "_id" : 1, "value" : { "age" : 1, "total" : 6 } }
  { "_id" : 2, "value" : { "age" : 2, "total" : 11 } }
  { "_id" : 3, "value" : { "age" : 3, "total" : 7 } }
  { "_id" : 4, "value" : { "age" : 4, "total" : 16 } }
  { "_id" : 5, "value" : { "age" : 5, "total" : 11 } }
  { "_id" : 6, "value" : { "age" : 6, "total" : 10 } }
  { "_id" : 7, "value" : { "age" : 7, "total" : 12 } }
  { "_id" : 8, "value" : { "age" : 8, "total" : 8 } }
  { "_id" : 9, "value" : { "age" : 9, "total" : 5 } }

MapReduce 可选键

  • finalize: function

    可以将reduce的结果发送给这个键,这是整个处理过程的最后一步。

  • keeptmp:boolean

    如果值为true,那么在连接关闭时会将临时结果集合保存下来,否则不保存。

  • out:string

    输出集合的名称。如果设置了这选项,系统会自动设置keeptemp: true

  • query: document

    在发往map函数前,先用指定条件过滤文档。

  • sort:document

    在发往map前先给文档排序(与Limit 一同使用非常有用)

  • limit: integer

    发往map函数的文档数量的上限

  • scope: document

    可以在JavaScript代码中使用的变量

  • verbose: boolean

    是否记录详细的服务器日志

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容