关于limma包contract martix上谁比谁的问题

在进行数据分析时,limma作为一个功能十分强大的存在,而且3步(1.ImFit; 2.eBayes; 3.topTable)就能完成差异分析。但是在做差异分析的时候limma需要的有3样东西。

表达矩阵

分组矩阵

差异比较矩阵

本人就在做contract martix时过于随意,谁比谁没有搞清楚导致发生了小意外。故事发生在最近论文的复现,用到了GSE19804.

load('changedID_19804.Rdata')              #此数据是我自己进行了ID转换的表达矩阵,其他东西没有改变
library(limma)

design <- model.matrix(~0+factor(group_list))
colnames(design)=levels(factor(group_list))
rownames(design)=colnames(sf)
design

contrast.matrix<-makeContrasts(Cancer-Normal,levels = design)
contrast.matrix

fit <- lmFit(sf,design)
fit2 <- contrasts.fit(fit, contrast.matrix)
fit2 <- eBayes(fit2)
tempOutput = topTable(fit2, coef=1, n=Inf)

library(ggpubr)
df=nrDEG
df$v= -log10(P.Value) 
ggscatter(df, x = "logFC", y = "v",size=0.5)

df$g=ifelse(df$P.Value>0.01,'stable', 
            ifelse( df$logFC >1,'up',
                    ifelse( df$logFC < -1,'down','stable') ))
table(df$g)
df$name=rownames(df)
head(df)
ggscatter(df, x = "logFC", y = "v",size=0.5,color = 'g',title = 'GSE19804_DEGs')

可以看到,制作差异比较矩阵的时候,是Cancer组比Normal,Cancer写在前面。

contrast.matrix<-makeContrasts(Cancer-Normal,levels = design)

那如果写反了呢?


up 和 down 都会反过来。连数据也部分颠倒。



也不算错得很离谱吧。。就是全部东西都颠倒了而已。如果记性好的话,还是问题不算太多。可是我就是记性不好那个。所以说还是规范起来,Cancer写左,Normal写右吧。

最后附上JM大神写的关于limma包是否需要比较矩阵的帖子https://github.com/bioconductor-china/basic/blob/master/makeContrasts.md

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,245评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,749评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,960评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,575评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,668评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,670评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,664评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,422评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,864评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,178评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,340评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,015评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,646评论 3 323
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,265评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,494评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,261评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,206评论 2 352