Redis基础--缓存问题3+1

缓存穿透、缓存雪崩、缓存击穿

缓存与数据库数据一致性

缓存穿透

大多数互联网应用,使用缓存的方式如下:

  1. 当业务系统发起某一个查询请求时,首先判断缓存中是否有该数据;
  2. 如果缓存中存在,则直接返回数据;
  3. 如果缓存中不存在,则再查询数据库,返回数据,将数据存入缓存。

缓存穿透:业务系统要查询的数据根本就存在!当业务系统发起查询时,按照上述流程,首先会前往缓存中查询,由于缓存中不存在,然后再前往数据库中查询。由于该数据压根就不存在,因此数据库也返回空。这就是缓存穿透。业务系统访问压根就不存在的数据,就称为缓存穿透。

危害

如果存在海量请求查询压根就不存在的数据,那么这些海量请求都会落到数据库中,数据库压力剧增,可能会导致系统崩溃(你要知道,目前业务系统中最脆弱的就是IO,稍微来点压力它就会崩溃,所以我们要想种种办法保护它)。

发生原因:

  • 代码逻辑问题;
  • 恶意攻击。

解决方法:

1、缓存空对象。将数据库查询结果为空的key也存储在缓存中。当后续又出现该key的查询请求时,缓存直接返回null,而无需查询数据库。

缓存空对象存在两个问题:

  • 空值做了缓存,意味着缓存层中存了更多的键,需要更多的内存空间 ( 如果是攻击,问题更严重 ),比较有效的方法是针对这类数据设置一个较短的过期时间,让其自动剔除。
  • 缓存层和存储层的数据会有一段时间窗口的不一致,可能会对业务有一定影响。例如过期时间设置为 5 分钟,如果此时存储层添加了这个数据,那此段时间就会出现缓存层和存储层数据的不一致,此时可以利用消息系统或者其他方式清除掉缓存层中的空对象。

2、布隆过滤器(BloomFilter)。需要在缓存之前再加一道屏障,里面存储目前数据库中存在的所有key。

当业务系统有查询请求的时候,首先去BloomFilter中查询该key是否存在。若不存在,则说明数据库中也不存在该数据,因此缓存都不要查了,直接返回null。若存在,则继续执行后续的流程,先前往缓存中查询,缓存中没有的话再前往数据库中的查询。

这种方法适用于数据命中不高,数据相对固定实时性低(通常是数据集较大)的应用场景,代码维护较为复杂,但是缓存空间占用少。

选择:对于空数据的key各不相同key重复请求概率低的场景而言,应该选择第二种方案。而对于空数据的key数量有限key重复请求概率较高的场景而言,应该选择第一种方案。

缓存雪崩

如果缓存因某种原因发生了宕机,那么原本被缓存抵挡的海量查询请求就会像疯了一样涌向数据库。此时数据库如果抵挡不了这巨大的压力,它就会崩溃。这就是缓存雪崩

如何避免:

1、使用集群架构。例如哨兵模式、集群(cluster)模式实现高可用。

2、使用“熔断”机制。应用记录当前服务的请求失败率,根据请求失败率来判定拒绝部分或者所有请求,并返回一个预设的结果。

缓存击穿(热点数据集中失效)

通常情况下,都会给缓存设定一个失效时间,过了失效时间后,该数据会被缓存直接删除,从而一定程度上保证数据的实时性。

但是,对于一些请求量极高的热点数据而言,一旦过了有效时间,此刻将会有大量请求落在数据库上,从而可能会导致数据库崩溃。

如果某一个热点数据失效,那么当再次有该数据的查询请求[req-1]时就会前往数据库查询。但是,从请求发往数据库,到该数据更新到缓存中的这段时间中,由于缓存中仍然没有该数据,因此这段时间内到达的查询请求都会落到数据库上,这将会对数据库造成巨大的压力。此外,当这些请求查询完成后,都会重复更新缓存。

解决方案:

1、互斥锁:只允许一个线程重建缓存,其他线程等待重建缓存的线程执行完,重新从缓存获取数据即可。

当第一个数据库查询请求发起后,就将缓存中该数据上锁;此时到达缓存的其他查询请求将无法查询该字段,从而被阻塞等待;当第一个请求完成数据库查询,并将数据更新值缓存后,释放锁;此时其他被阻塞的查询请求将可以直接从缓存中查到该数据;

当某一个热点数据失效后,只有第一个数据库查询请求发往数据库,其余所有的查询请求均被阻塞,从而保护了数据库。但是,由于采用了互斥锁,其他请求将会阻塞等待,此时系统的吞吐量将会下降。这需要结合实际的业务考虑是否允许这么做;

互斥锁可以避免某一个热点数据失效导致数据库崩溃的问题,而在实际业务中,往往会存在一批热点数据同时失效的场景。对于这种场景一般采用设置不同的失效时间的方法防止数据库过载:在一个基础时间上加/减一个随机数,从而将这些缓存的失效时间错开。

2、永不过期:从缓存层面来看,确实没有设置过期时间,所以不会出现热点 key 过期后产生的问题,也就是“物理”不过期;从功能层面来看,为每个 value 设置一个逻辑过期时间,当发现超过逻辑过期时间后,会使用单独的线程去构建缓存。

此方法有效杜绝了热点 key 产生的问题,但唯一不足的就是重构缓存期间,会出现数据不一致的情况,这取决于应用方是否容忍这种不一致。

选择:互斥锁 (mutex key),思路比较简单,可能会存在死锁和线程池阻塞的风险,但在在一致性上做的比较好;“永远不过期”,会存在数据不一致的情况,同时代码复杂度会增大。根据不同的业务进行选择。

缓存与数据库数据一致性

数据库和缓存更新,就容易出现缓存和数据库间的数据一致性问题。以Redis和Mysql为例:

  • 如果删除了缓存Redis,还没有来得及写库MySQL,另一个线程就来读取,发现缓存为空,则去数据库中读取数据写入缓存,此时缓存中为脏数据;
  • 如果先写了库,在删除缓存前,写库的线程宕机了,没有删除掉缓存,则也会出现数据不一致情况。、

因为写和读是并发的,没法保证顺序,就会出现缓存和数据库的数据不一致的问题。

解决方案:

1、延时双删策略:在写库前后都进行redis.del(key)操作,并且设定合理的超时时间。

  • 缓存删除key;
  • 数据库更新key对应的data;
  • 休眠(一般500ms);
  • 缓存再次删除key;

2、串行化:维护一个队列(内存队列,消息队列)。

写流程:

先删除缓存,删除之后再更新DB,监听从库(资源少的话主库也ok)的binlog,通过分析binlog解析出需要需要刷新的数据标识,然后将数据标识写入队列,接下来就消费队列,解析队列消息来读库获取相应的数据刷新缓存。

读流程:

先读缓存,如果缓存没读到,则去读DB,之后再异步将数据标识写入队列(这里队列与写流程的队列是同一个),接下来就消费队列,解析队列消息来读库获取相应的数据刷新缓存。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,937评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,503评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,712评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,668评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,677评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,601评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,975评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,637评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,881评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,621评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,710评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,387评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,971评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,947评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,189评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,805评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,449评论 2 342