1-简单的Python程序-模拟抛硬币

导语

我们在上一讲中介绍了如何搭建Python的编程环境,以及安装Numpy与Matplotlib库。依赖这两个库以及Python自带的Random库,足以使我们开始利用Python对概率论中的部分实验过程进行模拟

1. 模拟抛硬币算法讲解

我们这次的任务是利用Python来模拟抛硬币的情况,并且记录正面朝上占所有试验中的比率,大家是不是想起了课堂中提到过的蒲丰,皮尔逊等人做的试验?当然,我们现在已经不再需要再去扔几千次,几万次硬币了;Python为我们提供了一个相当便捷的解决方案。Python 的randint(0,1)函数可以等概率,随机地返回0与1两个数,我们可以将返回的数值0记为硬币的反面,1记为硬币的正面,所以问题就转换成了:统计大量重复试验中,结果为1占总试验次数的比例。

2. 算法流程图

简单地画一个流程图,希望有助于大家理解。


模拟抛硬币算法流程图

*流程图是网上使用ProcessOn画的,一个免费的在线流程图绘制平台,简单容易上手,强烈安利给大家~

3. 程序

from matplotlib import pyplot as plt  #引入Matplotlib库函数 
import numpy as np 
from random import randint

iterations = 10000  # 设置循环次数 
x = np.arange(iterations) # x = [0,1, 2, ...9999]
y = np.zeros(iterations) # y = [0, 0, ....0],1万个0
head = 0 # 正面朝上计数
for i in range(iterations):
    result = randint(0,1) # 随机生成结果,在这里将1 当做是正面
    if result == 1: 
        head+= 1    # 正面次数加1
    y[i]=head/(i+1) # 统计该次数下正面出现的频率
fig = plt.figure() # 绘制图像


plt.title("Flip coin")
plt.xlabel("Number of test") # x 轴的标题
plt.ylabel("Frequency of head-up") # y轴的标题
plt.scatter(x,y,s=1, c='r', marker = 'o', alpha=0.5,) # 绘制的是散点图,设置颜色为红色 (c='r'),每一个坐标点为球状(marker='o')
plt.xlim(0, iterations) # 设置x轴的范围,从0-1万
plt.ylim(0,1) # 设置y轴的范围,从0-1
plt.show()

4. 结果

废话不多说,上图:


这就是掷10000次硬币,正面朝上的概率

可以看见,随着硬币投掷次数的增加,正面朝上的几率逐渐稳定在0.5,这就是我们在课堂上讲过的内容:在重复试验中,我们可以使用频率的稳定值作为事件发生的概率。
怎么样,是不是学到了一招?

5. 思考题

在这个程序的基础上,我相信大家有能力进行进一步地延伸与发散。
大家可以尝试着去完成这样三个问题:
1,比较一下当投掷次数为100次,1000次与10000次的图像差别(提示:为了使区别更加显著,大家可以尝试将X轴使用对数坐标表示)

  1. 大家能否利用程序,来求出在这10000次投掷试验中,连续正面朝上的最大次数?将这10000次投掷试验重复100轮,连续最大正面朝上次数的平均值是多少?

好的,就先写到这里,感觉有意思的话点个赞再走呗~

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,634评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,951评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,427评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,770评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,835评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,799评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,768评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,544评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,979评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,271评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,427评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,121评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,756评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,375评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,579评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,410评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,315评论 2 352

推荐阅读更多精彩内容