人工智能—语音识别过程与识别方法

语音识别是完成语音到文字的转换。自然语言理解是完成文字 到语义的转换。语音合成是用语音方式输出用户想要的信息,用语音实现人与计算机之间的交互,主要包括语音识别、自然语言理解和语音合成。

相对于机器翻译,语音识别是更加困难的问题。机器翻译系统的输入通常是印刷文本,计算 机能清楚地区分单词和单词串。而语音识别系统的输入是语音,其复杂度要大得多,特别是口语 有很多的不确定性。人与人交流时,往往是根据上下文提供的信息猜测对方所说的是哪一个单 词,还可以根据对方使用的音调、面部表情和手势等来得到很多信息。特别是说话者会经常更正所说过的话,而且会使用不同的词来重复某些信息。显然,要使计算机像人一样识别语音是很困难的。 

语音识别过程包括从一段连续声波中采样,将每个采样值量化,得到声波的压缩数字化表 示。采样值位于重叠的帧中,对于每一帧,抽取出一个描述频谱内容的特征向量。然后,根据语音信号的特征识别语音所代表的单词,语音识别过程主要分为五步,如下:

01

语音信号采集

语音信号采集是语音信号处理的前提。语音通常通过话筒输入计算机。话筒将声波转换为 电压信号,然后通过A/D装置(如声卡)进行采样,从而将连续的电压信号转换为计算机能够处理的数字信号。

目前多媒体计算机已经非常普及,声卡、音箱、话筒等已是个人计算机的基本设备。其中声 卡是计算机对语音信进行加工的重要部件,它具有对信号滤波、放大、A/D和D/A转换等功 能。而且,现代操作系统都附带录音软件,通过它可以驱动声卡采集语音信号并保存为语音文件。

对于现场环境不好,或者空间受到限制,特别是对于许多专用设备,目前广泛采用基于单片机、DSP芯片的语音信号采集与处理系统。

02

语音信号预处理

语音信号号在采集后首先要进行滤波、A/D变换,预加重(Preemphasis)和端点检测等预处理, 然后才能进入识别、合成、增强等实际应用。

滤波的目的有两个:一是抑制输入信号中频率超出//2的所有分量(/:为采样频率),以防止 混叠干扰;二是抑制50 Hz的电源工频干扰。因此,滤波器应该是一个带通滤波器。

A/D变换是将语音模拟信号转换为数字信号。A/D变换中要对信号进行量化,量化后的信 号值与原信号值之间的差值为量化误差,又称为量化噪声。

预加重处理的目的是提升高频部分,使信号的频谱变得平坦,保持在低频到高频的整个频带 中,能用同样的信噪比求频谱,便于频谱分析。

端点检测是从包含语音的一段信号中确定出语音的起点和终点。有效的端点检测不仅能减 少处理时间,而且能排除无声段的噪声干扰。目前主要有两类方法:时域特征方法和频域特征方 法。时域特征方法是利用语音音量和过零率进行端点检测,计算量小,但对气音会造成误判,不 同的音量计算也会造成检测结果不同。频域特征方法是用声音的频谱的变异和熵的检测进行语 音检测,计算量较大。

03

语音信号的特征参数提取

人说话的频率在10 kHz以下。根据香农采样定理,为了使语音信号的采样数据中包含所需单词的信息,计算机的采样频率应是需要记录的语音信号中包含的最高语音频率的两倍以上。一般将信号分割成若干块,信号的每个块称为帧,为了保证可能落在帧边缘的重要信息不会丢失,应该使帧有重叠。例如,当使用20kH*的采样频率时,标准的一帧为10 ms,包含200个采样值。

话筒等语音输入设备可以采集到声波波形。虽然这些声音的波形包含了所 需单词的信息,但用肉眼观察这些波形却得不到多少信息因此,需要从采样数据中抽取那些能 够帮助辨别单词的特征信息。在语音识别中,常用线性预测编码 技术抽取语音特征。

线性预测编码的基本思想是:语音信号采样点之间存在相关性,可用过去的若干采样点的线 性组合预测当前和将来的采样点值。线性預测系数埽以通过使预测信号和实际信号之间的均方误差最小来唯一确定。

语音线性预测系数作为语音信号的一种特征参数,已经广泛应用于语音处理各个领域。

04

向置量化

向量量化(Vector Quantization,VQ)技术是20世纪W年代后期发展起来的一种数据压缩和 编码技术。经过向量量化的特征向量也可以作为后面隐马尔可夫模型中的输入观察符号。

在标量量化中整个动态范围被分成若干个小区间,每个小区间有一个代表值,对于一个输入 的标量信号,量化时落入小区间的值就用这个代表值>[戈替。因为这时的信号量是一维的标量,所 以称为标量量化。

向量量化的概念是用线性空间的观点[,把标量改为一维的向量,对向量进行量化。和标量量化一样,向量量化是把向量空间分成若干个小区域,每个小区域寻找一个代表向量,量化时落入 小区域的向量就用这个代表向量代替。

向量量化的基本原理是将若干个标量数据组成一个向量(或者是从一帧语音数据中提取的 特征向量)在多维空间给予整体量化,从而可以在信息量损失较小的情况下压缩数据量。

05

语音识别

当提取声音特征集合以后,就可以识别这些特征所代表的单词。本节重点关注单个单词的 识别。识别系统的输入是从语音信号中提取出的特征参数,如LPC预测编码参数,当然,单词对 应于字母序列。语音识别所采用的方法一般有模板匹配法、随机模型法和概率语法分析法三种。这三种方法都是建立在最大似然决策贝叶斯(Bayes)判决的基础上的。

1模板(template)匹配法

在训练阶段,用户将词汇表中的每一个词依次说一遍,并且将其特征向量作为模板存入模板 库。在识别阶段,将输入语音的特征向量序列,依次与模板库中的每个模板进行相似度比较,将 相似度最高者作为识别结果输出。

2随机模型法

随机模型法是目前语音识别研究的主流。其突出的代表是隐马尔可夫模型。语音信号在足 够短的时间段上的信号特征近似于稳定,而总的过程可看成是依次相对稳定的某一特性过渡到 另一特性。隐马尔可夫模型则用概率统计的方法来描述这样一种时变的过程。

3概率语法分析法

这种方法是用于大长度范围的连续语音识别。语音学家通过研究不同的语音语谱图及其变 化发现,虽然不同的人说同一些语音时,相应的语谱及其变化有种种差异,但是总有一些共同的 特点足以使他们区别于其他语音,也即语音学家提出的“区别性特征”。另一方面,人类的语言 要受词法、语法、语义等约束,人在识别语音的过程中充分应用了这些约束以及对话环境的有关 信息。于是,将语音识别专家提出的“区别性特征”与来自构词、句法、语义等语用约束相互结 合,就可以构成一个“自底向上”或“自顶向下”的交互作用的知识系统,不同层次的知识可以用 若干规则来描述。

除了上面的三种语音识别方法外,还有许多其他的语音识别方法。例如,基于人工神经网络 的语音识别方法,是目前的一个研究热点。目前用于语音识别研究的神经网络有BP神经网络、 Kohcmen特征映射神经网络等,特别是深度学习用于语音识别取得了长足的进步。


找我获取IT技术干货

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,036评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,046评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,411评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,622评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,661评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,521评论 1 304
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,288评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,200评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,644评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,837评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,953评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,673评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,281评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,889评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,011评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,119评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,901评论 2 355

推荐阅读更多精彩内容