从三个例子理解贝叶斯定理

Time Flies

## 贝叶斯定理

推荐阅读:

如何理解贝叶斯公式?

条件概率,全概率,贝叶斯公式理解

警察抓酒鬼

问题描述:酒鬼有90%概率外出喝酒,只有可能在A、B、C三个酒吧,概率相等,警察想去抓酒鬼,已知去了前两个酒吧都没抓到他,求去第三个酒吧抓到酒鬼的概率。

自己的解法:

用A、B代替前两个酒吧,C代替最后一个酒吧,C=1代表在酒吧C中抓到酒鬼,C=0代表没有在酒吧C中抓到酒鬼

在C=1发生的情况下,A=0且B=0的概率为1,P(A=0,B=0|C=1)=1

在A=0发生的情况下,B=0的概率为0.4/0.7,P(B=0|A=0)=0.4/0.7

用贝叶斯公式可以得:

image.png

李永乐老师的解法:

设事件A1为喝酒,事件A2为不喝酒,事件B1为警察在查前两个酒吧时抓住酒鬼,事件B2为警察在查前两个酒吧没抓住酒鬼

酒鬼喝酒的情况下,警察在前两个酒吧没抓住酒鬼的概率,也就等于酒鬼喝酒在C的概率,P(B2|A1)=1/3

酒鬼不喝酒的情况下,警察在前两个酒吧没抓住酒鬼的概率为1,P(B2|A2)=1

用条件概率与全概率公式可得:

image.png

理解:

考虑不同的基本事件,可由不同的过程推导出同样的答案

三门问题

问题描述:有三道关着的门,门后有不同价值的奖品,分别为车、羊、羊,玩家希望获得车,当玩家选择了一扇门后,主持人会打开一扇只含羊的门,然后问玩家要改变自己的选择吗?即改变前后,中奖的概率会变化吗?

解法:

不改变决策:主持人打不打开只含羊的门跟你没关系,中奖概率仅取决于第一次选择,P=1/3

改变决策:

直观解法:

假设1:选择的是羊,主持人打开了羊,于是换成车,bingo!

假设2:选择的是羊,主持人打开了羊,于是换成车,bingo!

假设3:选择的是车,主持人打开了两个羊中的一个,于是换成另一个羊,sad!

三个假设的事件概率相等,于是改变决策中奖的概率是P=2/3

贝叶斯公式:

玩家第一次打开的门是A,主持人打开的门是B,事件CarA定义为车在A的概率,事件OpenB定义为主持人打开B的概率

如果车在A门后,那么主持人选择BC中的一扇门打开,P(OpenB|CarA)=1/2

如果车在C门后,那么主持人只会选择把B打开,P(OpenB|CarC)=1

于是,车在A的后验概率为:

image.png

车在C的后验概率为:

image.png

故,玩家选择改变策略后,中奖概率从1/3提高到2/3

知乎上的一些回答:

"If you change, you win when your original choice was wrong; if you don't change, you win when your original choice was right." — Horst Hohberger

作者:Laputa

链接:https://www.zhihu.com/question/26709273/answer/157940623

来源:知乎

著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

你手头的这扇门,和另一扇门的区别是:另一扇门经过了一次考验,它曾经可能被排除掉,然而它并没有。你手头的门却一直被你保护着不被主持人排除掉,显然经历过考验的那扇门会更可靠。

作者:魔堕凡尘

链接:https://www.zhihu.com/question/26709273/answer/275756035

来源:知乎

著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

联想

玩家在面临三选一的抉择时,正确的概率为1/3,这个是事实,假设主持人排除掉错误答案的时机是在玩家在做选择前,主持人排除掉的选项玩家是无论如何也不会去选的,也就是说这时变成了二选一,当然正确的概率为1/2。

玩家做出三选一的抉择后,另外两扇门应该是等价的,主持人排除掉一个,那么两扇门就变得不等价了,正如知乎上所说的,另一扇门经过了一次考验,使得概率增强

两个问题的联系

错误的思考

酒鬼喝酒的概率是0.9,在A、B没被抓住,那么喝酒的事件被压缩到C上,喝酒的概率为0.9,在C中被抓到的概率为0.9

玩家三选一,主持人去掉一个错误答案,只剩一个正确答案和错误答案,于是概率为0.5

错在哪?

警察抓酒鬼之前,是不知道酒鬼的状态的,酒鬼有可能在家,也有可能在A、B、C中的一个,警察跑了两个酒吧,消除了两种喝酒状态,也就说降低了喝酒的概率,原来喝酒的概率是0.9,现在喝酒的概率是0.75

主持人去掉一个错误答案时,他是知道哪个是错误的,对于玩家而言,他中奖的概率提高了,原来是1/3,现在(改变决策)是2/3

扩展

如果酒鬼提前给警察打好招呼,肯定不去A和B,那如果警察先去A、B抓人,对酒鬼喝酒的概率没有影响,原来是0.9,现在还是0.9

如果主持人不告诉玩家一个错误答案,那玩家改变决策会对中奖的概率有影响吗?显然,玩家还是在三个选择中打转,中奖概率还是1/3

三个囚犯

问题描述:有A、B、C三个囚犯,其中一个人被赦免,另外两人被杀死,有一个看守知道谁被赦免了,但是他不能说谁被赦免了,他只能说两个要被杀死的人其中一个是谁,而且还不能告诉提问者是否被杀死。A问看守,看守说B要被杀死,求这种情况下,A被赦免的概率。

解法

A没问看守之前,A、B、C三人被赦免的概率都为1/3

设事件D为看守说出B要被杀死,事件A为A被赦免,事件B为B被赦免,事件C为C被赦免

如果A被赦免,则看守会从BC中选一个说死,则P(D|A)=1/2

如果B被赦免,看守不可能说B死,则P(D|B)=0

如果C被赦免,则看守只能说B死,则P(D|C)=1

那么A、B被赦免的后验概率为:

image.png

image.png

可以发现,当A问了看守后,他生存的概率还是1/3,而C的生存概率从1/3变为了2/3

理解

A问看守,看守只会说B或C会死一个,另一个相当于经过了一次考验,于是其被赦免的概率增强

其实像这种情形,如果A不关心其他人的死活,去询问看守是毫无意义的

从C被赦免概率增加来看,C会不会期待A去问看守呢?不会,因为看守有可能会说C死,所以C被赦免概率的增加是以经历一次生死考验为代价的

想利用好贝叶斯公式,关键是构建合理的事件,把方方面面都考虑到,计算过程是一目了然的


作者:廖少少

链接:https://www.jianshu.com/p/2509cef8d782

來源:简书

简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,287评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,346评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,277评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,132评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,147评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,106评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,019评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,862评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,301评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,521评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,682评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,405评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,996评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,651评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,803评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,674评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,563评论 2 352

推荐阅读更多精彩内容