100亿数据找出最大的1000个数字(top K问题)

在大规模数据处理中,经常会遇到的一类问题:在海量数据中找出出现频率最好的前k个数,或者从海量数据中找出最大的前k个数,这类问题通常被称为top K问题。例如,在搜索引擎中,统计搜索最热门的10个查询词;在歌曲库中统计下载最高的前10首歌等。

1、最容易想到的方法是将数据全部排序。该方法并不高效,因为题目的目的是寻找出最大的10000个数即可,而排序却是将所有的元素都排序了,做了很多的无用功。

2、局部淘汰法。用一个容器保存前10000个数,然后将剩余的所有数字一一与容器内的最小数字相比,如果所有后续的元素都比容器内的10000个数还小,那么容器内这个10000个数就是最大10000个数。如果某一后续元素比容器内最小数字大,则删掉容器内最小元素,并将该元素插入容器,最后遍历完这1亿个数,得到的结果容器中保存的数即为最终结果了。此时的时间复杂度为O(n+m^2),其中m为容器的大小。

这个容器可以用(小顶堆)最小堆来实现。我们知道完全二叉树有几个非常重要的特性,就是假如该二叉树中总共有N个节点,那么该二叉树的深度就是log2N,对于小顶堆来说移动根元素到 底部或者移动底部元素到根部只需要log2N,相比N来说时间复杂度优化太多了(1亿的logN值是26-27的一个浮点数)。基本的思路就是先从文件中取出1000个元素构建一个小顶堆数组k,然后依次对剩下的100亿-1000个数字进行遍历m,如果m大于小顶堆的根元素,即k[0],那么用m取代k[0],对新的数组进行重新构建组成一个新的小顶堆。这个算法的时间复杂度是O((100亿-1000)log(1000)),即O((N-M)logM),空间复杂度是M

这个算法优点是性能尚可,空间复杂度低,IO读取比较频繁,对系统压力大。

3、第三种方法是分治法,即大数据里最常用的MapReduce。

a、将100亿个数据分为1000个大分区,每个区1000万个数据

b、每个大分区再细分成100个小分区。总共就有1000*100=10万个分区

c、计算每个小分区上最大的1000个数。

为什么要找出每个分区上最大的1000个数?举个例子说明,全校高一有100个班,我想找出全校前10名的同学,很傻的办法就是,把高一100个班的同学成绩都取出来,作比较,这个比较数据量太大了。应该很容易想到,班里的第11名,不可能是全校的前10名。也就是说,不是班里的前10名,就不可能是全校的前10名。因此,只需要把每个班里的前10取出来,作比较就行了,这样比较的数据量就大大地减少了。我们要找的是100亿中的最大1000个数,所以每个分区中的第1001个数一定不可能是所有数据中的前1000个。

d、合并每个大分区细分出来的小分区。每个大分区有100个小分区,我们已经找出了每个小分区的前1000个数。将这100个分区的1000*100个数合并,找出每个大分区的前1000个数。

e、合并大分区。我们有1000个大分区,上一步已找出每个大分区的前1000个数。我们将这1000*1000个数合并,找出前1000.这1000个数就是所有数据中最大的1000个数。

(a、b、c为map阶段,d、e为reduce阶段)

4、Hash法

如果这1亿个书里面有很多重复的数,先通过Hash法,把这1亿个数字去重复,这样如果重复率很高的话,会减少很大的内存用量,从而缩小运算空间,然后通过分治法或最小堆法查找最大的10000个数。


注:参考sofuzi的博客内容

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,490评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,581评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,830评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,957评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,974评论 6 393
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,754评论 1 307
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,464评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,357评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,847评论 1 317
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,995评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,137评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,819评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,482评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,023评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,149评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,409评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,086评论 2 355

推荐阅读更多精彩内容