day01—基础

Day01、入门—TensorFlow

教程源于:莫烦python:https://morvanzhou.github.io/tutorials/machine-learning/tensorflow/

import tensorflow as tf
import numpy as np

# ###-------1、---------最初例子-----------------------------
# #创建数据
# x_data = np.random.rand(100).astype(np.float32)
# y_data = x_data*0.1 + 0.3
#
# #用 tf.Variable 来创建描述 y 的参数,把 y_data = x_data*0.1 + 0.3
# #想象成 y=Weights * x + biases, 然后神经网络也就是学着把
# # Weights 变成 0.1, biases 变成 0.3.
#
# #搭建模型
# Weights = tf.Variable(tf.random_uniform([1],-1.0,1.0))
# biases = tf.Variable(tf.zeros([1]))
#
# y = Weights*x_data + biases
#
# #计算误差
# loss = tf.reduce_mean(tf.square(y-y_data))
#
# #传播误差
# optimizer = tf.train.GradientDescentOptimizer(0.5)
# train = optimizer.minimize(loss)
#
# #训练
#  #先初始化所有之前定义的Variable
# init = tf.global_variables_initializer()
#
#  #创建回话Session
# sess = tf.Session()
# sess.run()
#
# for step in range(201):
#     sess.run(train)
#     if step % 20 == 0:
#         print(step,sess.run(Weights),sess.run(biases))

# ###-------2、-----简单应用----session会话控制--------------
#
# import tensorflow as tf
#
# matrix1 = tf.constant([[4,3]])
# print("matrix1:",matrix1)
#
# matrix2 = tf.constant([[2],[2]])
# print("matrix2:",matrix2)
#
# product = tf.matmul(matrix1,matrix2)
# print(product)
#
# #因为 product 不是直接计算的步骤, 所以我们会要使用 Session 来激活 product 并得到计算结果.
# #有两种形式使用会话控制 Session
# #方法1:
# sess = tf.Session()
# result = sess.run(product)
# print(result)   #[[14]]
# sess.close()
# #方法2:
# with tf.Session as sess:
#     result2 = sess.run(product)
#     print(result2)     #[[14]]

# ###------3、------简单应用----Variable--------------
#
# import tensorflow as tf
#
# state = tf.Variable(0,name='counter')
#
# #定义常量 one
# one = tf.constant(1)
#
# #定义加法步骤(注:此步并没有直接计算)
# new_value = tf.add(state, one)
#
# #将State 更新成new_value
# update = tf.assign(state,new_value)
#
# #如果你在 Tensorflow 中设定了变量,那么初始化变量是最重要的!!
# #所以定义了变量以后, 一定要定义 init = tf.initialize_all_variables() .
# #init = tf.initialize_all_variables()  #tf马上要废弃这种写法
# init = tf.global_variables_initializer() #替换成这样写就好
#
# #使用session
# with tf.Session() as sess:
#     sess.run(init)
#     for step in range(3):
#         print("before:",sess.run(state))
#         sess.run(update)
#         print("after",sess.run(state))
# ###输出结果:
#             # before: 0
#             # after 1
#             # before: 1
#             # after 2
#             # before: 2
#             # after 3

# ###------4、------简单应用----Variable--------------
#
# import tensorflow as tf
#
# #在 Tensorflow 中需要定义 placeholder 的 type ,一般为 float32 形式
# input1 = tf.placeholder(tf.float32)
# input2 = tf.placeholder(tf.float32)
#
# #mul = multiply 是将input1和input2 做乘法运算,并输出为 output
# output = tf.multiply(input1,input2)
#
# #同理,传值工作交给sess.run(), 需要传入的值放在了feed_dict={} 并一一对应每一个 input.
# #placeholder 与 feed_dict={} 是绑定在一起出现的。
# with tf.Session() as sess:
#     print(sess.run(output,feed_dict={input1:[7.],input2:[2.]}))    #[14.]
#     print(sess.run(output, feed_dict={input1: [1,3], input2: [2,4]}))    #[ 2. 12.]
#     print(sess.run(output, feed_dict={input1: 3, input2: 2}))      #6.0

###------5、----------add_layer()--------------

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

##!!!!!!!!!!!!!!!!!!add_layer()!!!!!!!!!!!!!!!!!!!!!!!!!!
#定义添加神经层的函数def add_layer(),它有四个参数:输入值、输入的大小、输出的大小和激励函数,我们设定默认的激励函数是None
def add_layer(inputs,in_size,out_size,activation_function=None):
    #神经层里常见的参数通常有weights、biases和激励函数。
    Weights = tf.Variable(tf.random_normal([in_size,out_size]))
    biases = tf.Variable(tf.zeros([1,out_size]) + 0.1)
    Wx_plus_b = tf.matmul(inputs,Weights) + biases   #定义Wx_plus_b, 即神经网络未激活的值

    #当activation_function——激励函数为None时,输出就是当前的预测值——Wx_plus_b,
    #不为None时,就把Wx_plus_b传到activation_function()函数中得到输出。
    if activation_function is None:
        outputs = Wx_plus_b
    else:
        outputs = activation_function(Wx_plus_b)

    return outputs

##!!!!!!!!!!!!!!!!!!!!!!!!!构建神经网络!!!!!!!!!!!!!!!!!!!!!!
#导入数据
#构建所需数据,这里的x_data和y_data并不是严格的一元二次函数的关系,因为我们多加了一个noise,这样看起来会更像真实情况
x_data = np.linspace(-1,1,300,dtype = np.float32)[:,np.newaxis]
noise = np.random.normal(0,0.05,x_data.shape).astype(np.float32)
y_data = np.square(x_data) - 0.5 + noise

#利用占位符定义我们所需的神经网络的输入。
#tf.placeholder()就是代表占位符,这里的None代表无论输入有多少都可以,因为输入只有一个特征,所以这里是1。
xs = tf.placeholder(tf.float32,[None,1])
ys = tf.placeholder(tf.float32,[None,1])

#搭建网络
l1 = add_layer(xs,1,10,activation_function=tf.nn.relu)

prediction = add_layer(l1,10,1,activation_function=None)

#计算预测值prediction和真实值的误差,对二者差的平方求和再取平均。
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction),reduction_indices=[1]))

train_step = tf.train.GradientDescentOptimizer(learning_rate=0.1).minimize(loss)   #以0.1的效率来最小化误差loss

#使用变量时,都要对变量进行初始化,必不可少
init = tf.global_variables_initializer()

#定义Session,并用Session来执行init初始化步骤
sess = tf.Session()
sess.run(init)

#训练
#让机器学习1000次,机器学习的内容是train_step,用Session来run每一次training的数据,逐步提升神经网络的预测准确率
for i in range(1000):
    #training
    sess.run(train_step,feed_dict={xs:x_data,ys:y_data})
    if i % 50 == 0:
        try:
            ax.lines.remove(lines[0])
        except Exception:
            pass
        #每50步输出一下机器学习的误差
        print(sess.run(loss,feed_dict={xs:x_data,ys:y_data}))
        prediction_value = sess.run(prediction,feed_dict={xs:x_data})
        # 可视化
        fig = plt.figure()
        ax = fig.add_subplot(1, 1, 1)
        ax.scatter(x_data, y_data)
        # plt.ion()
        lines = ax.plot(x_data,prediction_value,'r-',lw=5)
        plt.pause(0.1)
        plt.show()
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,185评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,445评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,684评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,564评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,681评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,874评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,025评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,761评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,217评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,545评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,694评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,351评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,988评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,778评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,007评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,427评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,580评论 2 349

推荐阅读更多精彩内容