2.opencv图像处理常用操作

图像的平滑处理

平滑,也称 模糊, 平滑处理时需要用到一个滤波器 。滤波器想象成一个包含加权系数的窗口,这个加权系数也叫做核或者模版。

    // 图像平滑处理分而学之.cpp : 定义控制台应用程序的入口点。
    //
    #include "stdafx.h"
    #include <iostream>
    #include <opencv2/opencv.hpp>
    using namespace std;
    using namespace cv;
    const int MAX_KERNEL_LENGTH = 31;
    int _tmain(int argc, _TCHAR* argv[])
    {
        Mat img = imread("D:\\lenargb.jpg", 1);
        if (img.empty())
        {
            cout << "无法读入图像" << endl;
            return -1;
        }
        Mat dest;
    
    #pragma region 归一化平滑
        for (int i = 1; i < MAX_KERNEL_LENGTH; i++)
        {
            blur(img, dest, Size(i, i), Point(-1, -1));//size(i,i)内核大小,最小为(1,1);
            imshow("归一化平滑图像", dest);
            waitKey(100);
    
        }
    #pragma endregion
    #pragma region 高斯平滑
        for (int i = 1; i < MAX_KERNEL_LENGTH; i = i + 2)
        {
            GaussianBlur(img, dest, Size(i, i), 0, 0);//size的两个参数必须都为正奇数,第四个参数是x方向的标准差,第五个参数是y方向的标准差,如果是0,表示从内核大小计算得到;
            imshow("高斯平滑图像图像", dest);
            waitKey(100);
        }
    #pragma endregion
    
    #pragma region 中值平滑
        for (int i = 1; i < MAX_KERNEL_LENGTH; i = i + 2)
        {
            medianBlur(img, dest, i);//第三个参数为核的边长,必须为奇数,一般中值平滑用的都是正方形所以只用一个参数就好;
            imshow("中值平滑", dest);
            waitKey(100);
        }
    #pragma endregion
    
        //waitKey(0);
        return 0;
    }

图像阈值操作

为了从一副图像中提取出我们需要的部分,应该用图像中的每一个像素点的灰度值与选取的阈值进行比较,并作出相应的判断。
一旦找到了需要分割的物体的像素点,我们可以对这些像素点设定一些特定的值来表示。(例如:可以将该物体的像素点的灰度值设定为:‘0’(黑色),其他的像素点的灰度值为:‘255’(白色);
OpenCV中提供了阈值(threshold)函数 有五种类型

  1. 二进制阈值化
    先要选定一个特定的阈值量,比如:120,这样,新的阈值产生规则可以解释为大于120的像素点的灰度值设定为最大值(如8位灰度值最大为255),灰度值小于120的像素点的灰度值设定为0。
  2. 反二进制阈值化
    该阈值化与二进制阈值化相似,先选定一个特定的灰度值作为阈值,不过最后的设定值相反。
  3. 截断阈值化
    同样首先需要选定一个阈值,图像中大于该阈值的像素点被设定为该阈值,小于该阈值的保持不变
  4. 阈值化为0
    首先需要选定一个阈值,像素点的灰度值大于该阈值的不进行任何改变;2 像素点的灰度值小于该阈值的,其灰度值全部变为0
  5. 反阈值化为0
    原理类似于0阈值,但是在对图像做处理的时候相反,即:像素点的灰度值小于该阈值的不进行任何改变,而大于该阈值的部分,其灰度值全部变为0。
    filter2D函数能够对图像按照模版进行滤波
    // 基本阈值操作2.cpp : 定义控制台应用程序的入口点。
    //
    
    #include "stdafx.h"
    #include <iostream>
    #include <opencv2/opencv.hpp>
    using namespace  std;
    using namespace cv;
    
    
    void respond(int, void*);
    const char * window_name = "图片";
    Mat src_gray;
    Mat dst;
    int threshhold_type = 5;
    const int max_type = 5;
    int threshhold_value = 0;
    int max_value = 255;
    int _tmain(int argc, _TCHAR* argv[])
    {
        namedWindow(window_name, WINDOW_AUTOSIZE);
        Mat src = imread("E:\\code\\test\\image\\tiantan.png", 1);
        if (src.empty())
        {
            cout << "无法正常载入图片" << endl; return -1;
        }
        //转换为灰度图;
        cvtColor(src, src_gray, CV_RGB2GRAY);
        imshow(window_name, src_gray);
        createTrackbar("阈值类型", window_name, &threshhold_type, max_type, respond);
        createTrackbar("阈值大小", window_name, &threshhold_value, max_value, respond);
        waitKey(0);
        return 0;
    }
    void respond(int, void*)
    {
        /* 0:二进制阈值
        1: 反二进制阈值
        2: 截断阈值
        3: 0阈值
        4: 反0阈值
        5:原灰度图;
        */
        if (threshhold_type==5)
        {
            imshow(window_name, src_gray);
        }
        else
        {
            threshold(src_gray, dst, threshhold_value, max_value, threshhold_type);
            imshow(window_name, dst);
        }
    }

实现自己的线性滤波器

OpenCV为我们提供了函数 filter2D ,来实现核卷积;

    // 实现自己的滤波器2.cpp : 定义控制台应用程序的入口点。
    //

    #include "stdafx.h"
    #include <iostream>
    #include <opencv2/opencv.hpp>
    using namespace std;
    using namespace cv;
    void respond(int, void*);
    const char * window_name = "实现自己的滤波器";
    int value = 0;
    Mat src,dst,kernel;
    const int max_value = 100;
    
    int _tmain(int argc, _TCHAR* argv[])
    {
        src = imread("E:\\code\\test\\image\\lena.png", 1);
        if (src.data==NULL)
        {
            cout << "无法加载图片" << endl;
            return -1;
        }
        namedWindow(window_name, WINDOW_AUTOSIZE);
        imshow(window_name, src);
        createTrackbar("核的大小", window_name, &value, max_value, respond);
        while (true)
        {
            
            char c = waitKey(0);
            if (c==27)
            {
                return 0;
            }
        }
    
        return 0;
    }
    
    void respond(int, void*)
    {
        int kernel_size = 1 + value * 2;
        kernel = Mat::ones(kernel_size, kernel_size, CV_32F)/(float)(kernel_size*kernel_size);
        filter2D(src, dst, -1, kernel, Point(-1, -1));
        imshow(window_name, dst);
    }

Sobel导数

Sobel 算子是一个离散微分算子 (discrete differentiation operator)。 它用来计算图像灰度函数的近似梯度。Sobel 算子结合了高斯平滑和微分求导。

    // Sobel导数.cpp : 定义控制台应用程序的入口点。
    //
    #include "stdafx.h"
    
    #include "opencv2/imgproc/imgproc.hpp"
    #include "opencv2/highgui/highgui.hpp"
    #include <stdlib.h>
    #include <stdio.h>
    
    using namespace cv;
    
    /** @function main */
    int main(int argc, char** argv)
    {
    
        Mat src, src_gray;
        Mat grad;
        char* window_name = "Sobel Demo - Simple Edge Detector";
        int scale = 1;
        int delta = 0;
        int ddepth = CV_16S;
    
        //int c;
    
        /// 装载图像
        src = imread("E://code//test//image//lena.png",1);
    
        if (!src.data)
        {
            return -1;
        }
        
        GaussianBlur(src, src, Size(3, 3), 0, 0, BORDER_DEFAULT);
        /// 创建显示窗口
        namedWindow(window_name, CV_WINDOW_AUTOSIZE);
        imshow(window_name, src);
        waitKey(3000);
        /// 转换为灰度图
        cvtColor(src, src_gray, CV_RGB2GRAY);
        
    
        imshow(window_name, src_gray);
        waitKey(3000);
        /// 创建 grad_x 和 grad_y 矩阵
        Mat grad_x, grad_y;
        Mat abs_grad_x, abs_grad_y;
    
        /// 求 X方向梯度
        
        Scharr( src_gray, grad_x, ddepth, 1, 0, scale, delta, BORDER_DEFAULT );
        //Sobel(src_gray, grad_x, ddepth, 1, 0, 3, scale, delta, BORDER_DEFAULT);
        convertScaleAbs(grad_x, abs_grad_x);
    
        /// 求Y方向梯度
        Scharr( src_gray, grad_y, ddepth, 0, 1, scale, delta, BORDER_DEFAULT );
        //Sobel(src_gray, grad_y, ddepth, 0, 1, 3, scale, delta, BORDER_DEFAULT);
        convertScaleAbs(grad_y, abs_grad_y);
        
        /// 合并梯度(近似)
        
        addWeighted(abs_grad_x, 0.5, abs_grad_y, 0.5, 0, grad);
    
        imshow(window_name, grad);
    
        waitKey(0);
    
        return 0;
    }
//其实不简单也没有关系,因为只是相对大小,在图像的对比中,依然能够找到边界;

Laplace 算子

一阶导数的极值位置,二阶导数为0。所以我们也可以用这个特点来作为检测图像边缘的方法。 但是, 二阶导数的0值不仅仅出现在边缘(它们也可能出现在无意义的位置),但是我们可以过滤掉这些点。
实际上,由于 Laplacian使用了图像梯度,它内部调用了 Sobel 算子。

    // Laplace算子.cpp : 定义控制台应用程序的入口点。
    //
    
    #include "stdafx.h"
    
    #include "opencv2/imgproc/imgproc.hpp"
    #include "opencv2/highgui/highgui.hpp"
    #include <stdlib.h>
    #include <stdio.h>
    
    using namespace cv;
    
    /** @函数 main */
    int main(int argc, char** argv)
    {
        Mat src, src_gray, dst;
        int kernel_size = 3;
        int scale = 1;
        int delta = 0;
        int ddepth = CV_16S;
        char* window_name = "Laplace Demo";
    
        int c;
    
        /// 装载图像
        src = imread("E://code//test//image//lena.png", 1);
    
        if (!src.data)
        {
            return -1;
        }
    
        /// 使用高斯滤波消除噪声
        GaussianBlur(src, src, Size(3, 3), 0, 0, BORDER_DEFAULT);
    
        /// 转换为灰度图
        cvtColor(src, src_gray, CV_RGB2GRAY);
    
        /// 创建显示窗口
        namedWindow(window_name, CV_WINDOW_AUTOSIZE);
        imshow(window_name, src);
        waitKey(2000);
        imshow(window_name, src_gray);
        waitKey(3000);
    
        /// 使用Laplace函数
        Mat abs_dst;
    
        Laplacian(src_gray, dst, ddepth, kernel_size, scale, delta, BORDER_DEFAULT);
        //ddepth: 输出图像的深度。 因为输入图像的深度是 CV_8U ,这里我们必须定义 ddepth = CV_16S 以避免外溢。
        //下面大概求绝对值;
        convertScaleAbs(dst, abs_dst);
    
        /// 显示结果
        imshow(window_name, abs_dst);
        
        waitKey(0);
    
        return 0;
    }

Canny 边缘检测

步骤

  1. 消除噪声。 使用高斯平滑滤波器卷积降噪。
  2. 计算梯度幅值和方向。 此处,使用Sobel滤波器
  3. 非极大值 抑制。 这一步排除非边缘像素, 仅仅保留了一些细线条(候选边缘)。
  4. 滞后阈值: 最后一步,Canny 使用了滞后阈值,滞后阈值需要两个阈值(高阈值和低阈值): Canny 推荐的 高:低 阈值比在 2:1 到3:1之间。
    // Canny边缘检测.cpp : 定义控制台应用程序的入口点。
    //
    
    #include "stdafx.h" 
    #include "opencv2/imgproc/imgproc.hpp"
    #include "opencv2/highgui/highgui.hpp"
    #include <stdlib.h>
    #include <stdio.h>
    
    using namespace cv;
    
    /// 全局变量
    
    Mat src, src_gray;
    Mat dst, detected_edges;
    
    //int edgeThresh = 1;
    int lowThreshold=1;
    int const max_lowThreshold = 100;
    int ratio = 3;
    int kernel_size = 3;
    char* window_name = "Edge Map";
    
    /**
    * @函数 CannyThreshold
    * @简介: trackbar 交互回调 - Canny阈值输入比例1:3
    */
    void CannyThreshold(int, void*)
    {
        /// 使用 3x3内核降噪
        blur(src_gray, detected_edges, Size(3, 3));
    
        /// 运行Canny算子
        Canny(detected_edges, detected_edges, lowThreshold, lowThreshold*ratio, kernel_size);
        //第一个参数是原图像,第二个参数是输出图像,支持本地计算,第三个参数是低阈值,第四个参数是高阈值,第五个参数是内部sobel算子使用的内核大小。
        /// 使用 Canny算子输出边缘作为掩码显示原图像
        dst = Scalar::all(0);
        //把dst填充为黑色
        src.copyTo(dst, detected_edges);
        //第一个参数为输出图像,第二个参数为掩码;即把第二个图像中非0的部分在src中的像素复制给dst;
    
        imshow(window_name, dst);
    }
    
    
    /** @函数 main */
    int main(int argc, char** argv)
    {
        /// 装载图像
        src = imread("E:\\code\\test\\image\\lena.png",1);
    
        if (!src.data)
        {
            return -1;
        }
    
        /// 创建与src同类型和大小的矩阵(dst)
        dst.create(src.size(), src.type());
    
        /// 原图像转换为灰度图像
        cvtColor(src, src_gray, CV_BGR2GRAY);
    
        /// 创建显示窗口
        namedWindow(window_name, CV_WINDOW_AUTOSIZE);
    
        /// 创建trackbar
        createTrackbar("Min Threshold:", window_name, &lowThreshold, max_lowThreshold, CannyThreshold);
    
        /// 显示图像
        CannyThreshold(0, 0);
    
        /// 等待用户反应
        waitKey(0);
    
        return 0;
    }
1.png
    /// 使用 3x3内核降噪
    blur(src_gray, detected_edges, Size(3, 3));

    /// 运行Canny算子
    Canny(detected_edges, detected_edges, lowThreshold, lowThreshold*ratio, kernel_size);
    //第一个参数是原图像,第二个参数是输出图像,支持本地计算,第三个参数是低阈值,第四个参数是高阈值,第五个参数是内部sobel算子使用的内核大小。
    /// 使用 Canny算子输出边缘作为掩码显示原图像
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,686评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,668评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,160评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,736评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,847评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,043评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,129评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,872评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,318评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,645评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,777评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,861评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,589评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,687评论 2 351

推荐阅读更多精彩内容

  • 不同图像灰度不同,边界处一般会有明显的边缘,利用此特征可以分割图像。需要说明的是:边缘和物体间的边界并不等同,边缘...
    大川无敌阅读 13,836评论 0 29
  • 1、阈值分割 1.1 简介 图像阈值化分割是一种传统的最常用的图像分割方法,因其实现简单、计算量小、性能较稳定而成...
    木夜溯阅读 22,572评论 9 15
  • 这篇文章总结比较全面:http://blog.csdn.net/timidsmile/article/detail...
    rogerwu1228阅读 1,814评论 0 3
  • 本文转自 python数字图像处理 图像简单滤波 对图像进行滤波,可以有两种效果:一种是平滑滤波,用来抑制噪声;另...
    jiandanjinxin阅读 31,256评论 2 14
  • 我们在做seo优化的时候,都会寻找可优化的核心关键词,可以说核心关键词挖掘是一个站的灵魂,一开始找的词不准...
    小迟AA阅读 258评论 0 0