Pandas介绍和其有什么优点?

Pandas是Python的核心数据分析支持库,提供了快速、灵活、明确的数据结构,旨在简单、直观的处理关系型、标记型数据。

Pandas适用于处理以下类型的数据:

1.与SQL或Excel表类似的,含异构列的表格数据;

2.有序和无序(非固定频率)的时间序列数据;

3.带行列标签的矩阵数据,包括同构或异构型数据;

4.任意其它形式的观测、统计数据集,数据转入Pandas数据结构时不必事先标记。

Pandas的主要数据结构是Series(一维数据)与DataFrame(二维数据),这两种数据结构足以处理金融、统计、社会科学、工程等领域里的大多数典型的用例。对于R用户,DataFrame提供了比R语言data.frame更丰富的功能。Pandas是基于NumPy开发,可以与其它第三方科学计算支持库完美集成。

Pandas有许多的优势

处理浮点与非浮点数据里的缺失数据,表示为NaN;

大小可变:插入或删除DataFrame等多维对象的列;

自动、显示数据对齐:显示将对象与一组标签对齐,也可以忽略标签,在Series、DataFrame计算时自动与数据对齐;

强大、灵活的分组(group by)功能:拆分-应用-组合数据集,聚合、转换数据;

把Python和NumPy数据结构里不规则、不同索引的数据轻松地转换为DataFrame对象;

基于智能标签,对大型数据集进行切片、花式索引、子集分解等操作;

直观地合并、连接数据集;

灵活地重构、透视数据集;

轴支持结构化标签:一个刻度支持多个标签;

成熟地IO工具:读取文本文件(CSV等支持分隔符地文件)、Excel文件、数据库等来源地数据,利用超快地HDF5格式保存/加载数据;

时间序列:支持日期范围生成、频率转换、移动窗口统计、移动窗口线性回归、日期位移等时间序列功能。

这些功能主要是为了解决其它编程语言、科研环境的痛点。处理数据一般分为数据整理与清洗、数据分析与建模、数据可视化与制表,Pandas是处理数据的理想工具。

Pandas速度很快,Pandas很多底层算法都用Cython优化过。然而,为了保持通用性,必然要牺牲一些性能,如果专注某一功能,完全可以开发出比Pandas更快的专用工具。

Pandas是statsmodels的依赖项,因此,Pandas也是Python中统计计算生态系统的重要组成部分。

Pandas已广泛应用于金融领域。

数据结构


为什么有多个数据结构?

Pandas数据结构就像是低维数据的容器。比如,DataFrame是Series的容器,Series则是标量的容器。使用这种方式,可以在容器中以字典的形式插入或删除对象。

此外,通用API函数的默认操作要顾及时间序列与截面数据集的方向。多维数组存储二维或三维数据时,编写函数要注意数据集的方向,这对我们来说是一种负担;如果不考虑C或Fortran中连续性对性能的影响,一般情况下,不同的轴在程序里其实没有什么区别。Pandas里,轴的概念主要是为了给数据赋予更字段的语义,即用“更恰当”的方式表示数据集的方向。这样做可以让我们在使用Pandas编写数据转换函数时,少费点脑子。

处理DataFrame等表格数据时,index(行)或columns(列)比axis

0和axis 1更直观。用这种方式迭代DataFrame的列,代码更容易读懂:


大小可变与数据复制

Pandas所有数据结构的值都是可变的,但数据结构的大小并非都是可变的,比如,Series的长度不可改变,但DataFrame里就可以插入列。

Pandas里,绝大多数方法都不改变原始的输入数据,而是复制数据,生成新的对象。一般来说,原始输入数据不变更稳妥。

如果你想学习Python,但是找不到学习路径和资源,欢迎来指尖编程。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,723评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,003评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,512评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,825评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,874评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,841评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,812评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,582评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,033评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,309评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,450评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,158评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,789评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,409评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,609评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,440评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,357评论 2 352

推荐阅读更多精彩内容