写在前面:
大家学习知识不用死抓怎么实现,很多同学认为学了套路能做到举一反三就不错了,这其实还是停留在“术”的层面。大家要学会了解底层的原理自己去折腾,所以这也是为什么我们要花将近一年左右的时间,去学 NDK 去学 Linux 内核,因为很多东西网上也是搜索不到的。
监控死锁:
主线程死锁容易 ANR ,其他线程死锁容易引起异常(不是闪退但会引起用户杀死或卸载 App)。开发需求的时候我们其实很少会自己写出死锁( sdk 开发的除外) 很多情况下都是不小心调用了第三方的或者系统的一些 API 导致的。那我们有没有办法把线上死锁引起的 ANR 上报到服务器呢?或者说有没有什么方法可以及时的监控到死锁?先来看一个死锁的例子
Thread thread1 = new Thread(new Runnable() {
@Override
public void run() {
synchronized (deadLock1) {
try {
sleep_(1);
} catch (Exception e) {
e.printStackTrace();
}
synchronized (deadLock2) {
Log.e("TAG","thread1");
}
}
}
}, "testThread1");
Thread thread2 = new Thread(new Runnable() {
@Override
public void run() {
synchronized (deadLock2) {
try {
sleep_(1);
} catch (Exception e) {
e.printStackTrace();
}
synchronized (deadLock1) {
Log.e("TAG","thread2");
}
}
}
}, "testThread2");
这是一个比较典型的死锁例子,很多同学肉眼一般能看出来,但是到了线上我们就得做个自动分析,首先如果在本地排查,我们最好的方法是先 dump 到线程的信息
"testThread1@5890" prio=5 tid=0x5210 nid=NA waiting for monitor entry
java.lang.Thread.State: BLOCKED
waiting for testThread2@5889 to release lock on <0x1709> (a java.lang.Object)
at com.darren.optimize.day13.MainActivity$3.run(MainActivity.java:195)
- locked <0x1708> (a java.lang.Object)
at java.lang.Thread.run(Thread.java:784)
"testThread2@5889" prio=5 tid=0x5211 nid=NA waiting for monitor entry
java.lang.Thread.State: BLOCKED
waiting for testThread1@5890 to release lock on <0x1708> (a java.lang.Object)
at com.darren.optimize.day13.MainActivity$4.run(MainActivity.java:212)
- locked <0x1709> (a java.lang.Object)
at java.lang.Thread.run(Thread.java:784)
如果我们能拿到线程在等待哪个锁释放,当前持有哪个锁这两个信息的话,那么一切就能迎刃而解了。上期有说的在 java 层是无法做到的,但是我们分析了线程创建的底层原理后在 Native 层找到了答案:
http://androidxref.com/9.0.0_r3/xref/art/runtime/monitor.cc
// 当前线程在竞争哪个锁
mirror::Object* Monitor::GetContendedMonitor(Thread* thread) {
// This is used to implement JDWP's ThreadReference.CurrentContendedMonitor, and has a bizarre
// definition of contended that includes a monitor a thread is trying to enter...
mirror::Object* result = thread->GetMonitorEnterObject();
if (result == nullptr) {
// ...but also a monitor that the thread is waiting on.
MutexLock mu(Thread::Current(), *thread->GetWaitMutex());
Monitor* monitor = thread->GetWaitMonitor();
if (monitor != nullptr) {
result = monitor->GetObject();
}
}
return result;
}
// 当前锁被哪个线程持有
uint32_t Monitor::GetLockOwnerThreadId(mirror::Object* obj) {
DCHECK(obj != nullptr);
LockWord lock_word = obj->GetLockWord(true);
switch (lock_word.GetState()) {
case LockWord::kHashCode:
// Fall-through.
case LockWord::kUnlocked:
return ThreadList::kInvalidThreadId;
case LockWord::kThinLocked:
return lock_word.ThinLockOwner();
case LockWord::kFatLocked: {
Monitor* mon = lock_word.FatLockMonitor();
return mon->GetOwnerThreadId();
}
default: {
LOG(FATAL) << "Unreachable";
UNREACHABLE();
}
}
}
有了这两个方法,代码实现起来就比较简单了:
- 获取所有的线程,判断是不是 BOLCKED 状态
- 调用 GetContendedMonitor 与 GetLockOwnerThreadId 获取到被锁住的线程
- 对死锁进行分组,输出死锁对应的位置
// 初始化
extern "C"
JNIEXPORT jint JNICALL
Java_com_darren_optimize_day13_NativeThreadMonitor_nativeInit(JNIEnv *env, jclass clazz, jint level) {
api_level = level;
// dlopen libart.so
void *so_addr = ndk_dlopen("libart.so", RTLD_LAZY);
if (so_addr == NULL) {
return 1;
}
// Monitor::GetContendedMonitor
get_contended_monitor = ndk_dlsym(so_addr, "_ZN3art7Monitor19GetContendedMonitorEPNS_6ThreadE");
if (get_contended_monitor == NULL) {
return 2;
}
// Monitor::GetLockOwnerThreadId
get_lock_owner_thread = ndk_dlsym(so_addr, get_lock_owner_symbol_name(api_level));
if (get_lock_owner_thread == NULL) {
return 3;
}
return 0;
}
// 获取当前线程锁被哪个线程持有了
extern "C"
JNIEXPORT jint JNICALL
Java_com_darren_optimize_day13_NativeThreadMonitor_getContentThreadIdArt(JNIEnv *env, jclass clazz,
jlong native_thread) {
int monitor_thread_id = 0;
if (get_contended_monitor != nullptr && get_lock_owner_thread != nullptr) {
int monitorObj = ((int (*)(long)) get_contended_monitor)(native_thread);
if (monitorObj != 0) {
monitor_thread_id = ((int (*)(int)) get_lock_owner_thread)(monitorObj);
} else {
LOGD("GetContendedMonitor return null");
monitor_thread_id = 0;
}
}
return monitor_thread_id;
}
// 获取线程 id
extern "C"
JNIEXPORT jint JNICALL
Java_com_darren_optimize_day13_NativeThreadMonitor_getThreadIdFromThreadPtr(JNIEnv *env, jclass clazz,
jlong nativeThread) {
if (nativeThread != 0) {
if (api_level > 20) { // 大于5.0系统
int *pInt = reinterpret_cast<int *>(nativeThread);
pInt = pInt + 3;
return *pInt; // 返回 monitor 所使用的Thread id
}
} else {
LOGE("suspendThreadArt failed");
}
return 0;
}
NativeThreadMonitor.nativeInit(Build.VERSION.SDK_INT);
Set<Thread> threads = NativeThreadMonitor.getAllThreads();
for (Thread thread : threads) {
if (thread.getState() == Thread.State.BLOCKED) {
long threadAddress = (long) ReflectUtil.getFieldObject(thread, "nativePeer");
// 这里记一下,找不到地址,或者线程已经挂了,此时获取到的可能是0和-1
if (threadAddress <= 0) {
continue;
}
int blockThreadId = NativeThreadMonitor.getContentThreadIdArt(threadAddress);
int curThreadId = NativeThreadMonitor.getThreadIdFromThreadPtr(threadAddress);
if (blockThreadId != 0 && curThreadId != 0) {
deadLock.put(curThreadId, new DeadLockThread(curThreadId, blockThreadId, thread));
}
}
}
try {
// 将所有情况进行分组
ArrayList<HashMap<Integer, Thread>> deadLockThreadGroup = deadLockThreadGroup();
// 再来找死锁
JSONObject objectGroup = new JSONObject();
for (int i = 0; i < deadLockThreadGroup.size(); i++) {
// 所有的组拿出来
HashMap<Integer, Thread> group = deadLockThreadGroup.get(i);
JSONArray array = new JSONArray();
for (int curId : group.keySet()) {
// 获取 DeadLockThread
DeadLockThread deadLockThread = deadLock.get(curId);
if (deadLockThread == null) {
continue;
}
// 获取等待线程
Thread waitThread = group.get(deadLockThread.blockId);
if (waitThread == null) {
continue;
}
Thread deadThread = group.get(curId);
JSONObject temp = new JSONObject();
JSONArray stacks = new JSONArray();
temp.put("thread_name", deadThread.getName());
temp.put("thread_id", deadThread.getId());
temp.put("wait_thread", waitThread.getName());
temp.put("wait_id", waitThread.getId());
StackTraceElement[] stackTraceElements = deadThread.getStackTrace();
for (StackTraceElement stackTraceElement : stackTraceElements) {
stacks.put(stackTraceElement.toString());
}
temp.put("thread_stack", stacks);
array.put(temp);
}
objectGroup.put("dead_lock_group_" + i, array);
}
Log.e("TAG", objectGroup.toString());
} catch (Exception e) {
e.printStackTrace();
}
监控存活周期:
有些场景下我们想监控线程的存活周期,也就是说线程从开始启动到运行结束总共存活了多长时间,占了多少内存,占了多少 CPU 等等,异常的情况下我们线下要给出警告线上要上报到服务器。目前我们能想到两种方案一种是采用之前讲的 ASM 插桩的方式,但是这种方案很多场景不适用;还有一种是今天要讲到的 Native 插桩。插桩点依旧是之前的线程创建的底层原理:
http://androidxref.com/9.0.0_r3/xref/art/runtime/thread.cc
// 最终想监控这个方法
void* Thread::CreateCallback(void* arg) {
// ...
}
void *(*old_create_call_back)(void *) = NULL;
void *create_call_back(void *args) {
// 记录开始时间
long startTime = time(NULL);
// 调用原始方法
void *result = old_create_call_back(args);
// 获取当前线程信息,计算输出存活时间
int tid = gettid();
const char *thread_name = getThreadName(gettid());
long alive_time = time(NULL) - startTime;
LOGE("线程信息:thread_id = %d, thread_name = %s, alive_time = %lds", tid, thread_name, alive_time);
// 获取内存占用,获取 cpu 占用率,异常情况输出警告
return result;
}
extern "C"
JNIEXPORT void JNICALL
Java_com_darren_optimize_day13_NativeThreadMonitor_monitoringThread(JNIEnv *env, jclass clazz) {
void *so_addr = ndk_dlopen("libart.so", RTLD_LAZY);
void *thread_create_call_back = ndk_dlsym(so_addr, "_ZN3art6Thread14CreateCallbackEPv");
if (registerInlineHook((uint32_t) thread_create_call_back, (uint32_t) create_call_back,
(uint32_t **) &old_create_call_back) != ELE7EN_OK) {
LOGE("monitoringThread registerInlineHook error");
} else {
LOGE("monitoringThread registerInlineHook ok");
}
if (inlineHook((uint32_t) thread_create_call_back) != ELE7EN_OK) {
LOGE("monitoringThread inlineHook error");
} else {
LOGE("monitoringThread inlineHook ok");
}
}
监控 CPU 占用率:
cpu 占用率比较简单,我们只需要解析到 /proc/pid/task/tid/stat 与 /proc/pid/stat 即可。
// 进程 stat 信息
extern const char *getProgressInfo() {
// 读一个文件
char *path = (char *) calloc(1, PATH_MAX);
char *line = (char *) calloc(1, THREAD_NAME_LENGTH);
snprintf(path, PATH_MAX, "/proc/%d/stat", getpid());
FILE *commFile = NULL;
if (commFile = fopen(path, "r")) {
fgets(line, THREAD_NAME_LENGTH, commFile);
fclose(commFile);
}
if (line) {
int length = strlen(line);
if (line[length - 1] == '\n') {
line[length - 1] = '\0';
}
}
LOGE("progress info ->%s", line);
free(path);
return line;
}
// 线程 stat 信息
extern const char *getThreadInfo() {
// 读一个文件
char *path = (char *) calloc(1, PATH_MAX);
char *line = (char *) calloc(1, THREAD_NAME_LENGTH);
snprintf(path, PATH_MAX, "/proc/%d/task/%d/stat", getpid(), gettid());
FILE *commFile = NULL;
if (commFile = fopen(path, "r")) {
fgets(line, THREAD_NAME_LENGTH, commFile);
fclose(commFile);
}
if (line) {
int length = strlen(line);
if (line[length - 1] == '\n') {
line[length - 1] = '\0';
}
}
LOGE("thread info ->%s", line);
free(path);
return line;
}
写在最后:
效能优化这东西其实可做可不做,不像需求能快速的看到收益和效果,所以这也是很多同学比较缺失的一个部分。为什么我们要看重这点,因为今天市场上比较成功的公司基本都做到了"一拖三" 。首先,是团队很强 - 创始人和团队很强,在一个比较强的团队带领下,需要做到另外三点,要么是把用户体验提升了、要么能降低成本、要么能提升效率,有的时候我们的成本也没下降,效率也没提升,但是如果能把用户体验做得极致,也可以。总之,在一个优秀的、成功的团队基础之上,我们只要能够把用户体验、能够把成本或者效率这三者至少做到一点,同时另外两点又没有减损的话,基本上就可以成了。