Flink-6.Flink 分组求和

package com.ctgu.flink.project;


import com.ctgu.flink.entity.BehaviorChannelCount;
import com.ctgu.flink.entity.MarketingUserBehavior;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.functions.AggregateFunction;
import org.apache.flink.api.common.functions.RichMapFunction;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.source.SourceFunction;
import org.apache.flink.streaming.api.functions.windowing.ProcessWindowFunction;
import org.apache.flink.streaming.api.functions.windowing.WindowFunction;
import org.apache.flink.streaming.api.windowing.assigners.SlidingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.util.Collector;

import java.sql.Timestamp;
import java.time.Duration;
import java.util.Arrays;
import java.util.List;
import java.util.Random;

public class Flink_Sql_Marketing {
    public static void main(String[] args) throws Exception {

        long start = System.currentTimeMillis();

        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);

        DataStream<MarketingUserBehavior> dataStream = env.addSource(new SimulatedMarketingUserBehaviorSource())
                .assignTimestampsAndWatermarks(WatermarkStrategy
                        .<MarketingUserBehavior>forBoundedOutOfOrderness(Duration.ofSeconds(0))
                        .withTimestampAssigner((event, timestamp) -> event.getTimestamp()));

        dataStream.filter(data -> !"UNINSTALL".equals(data.getBehavior()))
                .keyBy(new KeySelector<MarketingUserBehavior, Tuple2<String, String>>() {

                    @Override
                    public Tuple2<String, String> getKey(MarketingUserBehavior userBehavior) throws Exception {
                        return new Tuple2<>(userBehavior.getChannel(), userBehavior.getBehavior());
                    }
                })
//                .keyBy(MarketingUserBehavior::getBehavior)
                .window(SlidingEventTimeWindows.of(Time.hours(1), Time.seconds(1)))
                .aggregate(new AverageAggregate(), new MyProcessWindowFunction())
                .print("分组求和:");

        dataStream.filter(data -> !"UNINSTALL".equals(data.getBehavior()))
                .map(new MyMapFunction())
                .keyBy(data -> data.f0)
                .window(SlidingEventTimeWindows.of(Time.hours(1), Time.seconds(1)))
                .aggregate(new AverageAggregate1(), new MyWindowFunction())
                .print("total:");

        env.execute("Table SQL");

        System.out.println("耗时: " + (System.currentTimeMillis() - start) / 1000);
    }

    private static class SimulatedMarketingUserBehaviorSource implements SourceFunction<MarketingUserBehavior> {
        boolean running = true;
        List<String> behaviorList = Arrays.asList("CLICK", "DOWNLOAD", "INSTALL", "UNINSTALL");
        List<String> channelList = Arrays.asList("app store", "wechat", "tencent", "ali");
        Random rand = new Random();

        @Override
        public void run(SourceContext<MarketingUserBehavior> sourceContext) throws Exception {
            while (running) {
                long userId = rand.nextLong();
                String behavior = behaviorList.get(rand.nextInt(behaviorList.size()));
                String channel = channelList.get(rand.nextInt(channelList.size()));
                long timestamp = System.currentTimeMillis();
                MarketingUserBehavior userBehavior = new MarketingUserBehavior(userId, behavior, channel, timestamp);
                System.out.println(userBehavior);
                sourceContext.collect(userBehavior);
                Thread.sleep(100);
            }
        }

        @Override
        public void cancel() {
            running = false;
        }
    }

    private static class MyMapFunction extends RichMapFunction<MarketingUserBehavior, Tuple2<String, Long>> {

        @Override
        public Tuple2<String, Long> map(MarketingUserBehavior userBehavior) throws Exception {
            return new Tuple2<>("total", 1L);
        }
    }

    private static class AverageAggregate
            implements AggregateFunction<MarketingUserBehavior, Long, Long> {
        @Override
        public Long createAccumulator() {
            return 0L;
        }

        @Override
        public Long add(MarketingUserBehavior userBehavior, Long aLong) {
            return aLong + 1;
        }

        @Override
        public Long getResult(Long aLong) {
            return aLong;
        }

        @Override
        public Long merge(Long a, Long b) {
            return a + b;
        }
    }

    private static class AverageAggregate1
            implements AggregateFunction<Tuple2<String, Long>, Long, Long> {
        @Override
        public Long createAccumulator() {
            return 0L;
        }

        @Override
        public Long add(Tuple2<String, Long> tuple, Long aLong) {
            return aLong + 1;
        }

        @Override
        public Long getResult(Long aLong) {
            return aLong;
        }

        @Override
        public Long merge(Long a, Long b) {
            return a + b;
        }
    }

    private static class MyWindowFunction
            implements WindowFunction<Long, BehaviorChannelCount, String, TimeWindow> {

        @Override
        public void apply(String key,
                          TimeWindow timeWindow,
                          Iterable<Long> iterable,
                          Collector<BehaviorChannelCount> out) throws Exception {
            String windowEnd = new Timestamp(timeWindow.getEnd()).toString();
            Long count = iterable.iterator().next();
            out.collect(new BehaviorChannelCount(key, key, windowEnd, count));
        }
    }

    private static class MyProcessWindowFunction
            extends ProcessWindowFunction<Long, BehaviorChannelCount, Tuple2<String, String>, TimeWindow> {

        @Override
        public void process(Tuple2<String, String> tuple2,
                            Context context,
                            Iterable<Long> iterable,
                            Collector<BehaviorChannelCount> out) throws Exception {
            String channel = tuple2.getField(0);
            String behavior = tuple2.getField(1);
            String windowEnd = new Timestamp(context.window().getEnd()).toString();
            Long count = iterable.iterator().next();
            out.collect(new BehaviorChannelCount(behavior, channel, windowEnd, count));
        }
    }

}

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,258评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,335评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,225评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,126评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,140评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,098评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,018评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,857评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,298评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,518评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,678评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,400评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,993评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,638评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,801评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,661评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,558评论 2 352

推荐阅读更多精彩内容