KNN算法-1-KNN简介

KNN入门

1、KNN简介

kNN(k-NearestNeighbor),也就是k最近邻算法,这是一种有监督的学习算法,该算法既可以针对离散因变量做分类,又可以对连续因变量做预测

2、核心思想

近朱者赤,近墨者黑

举个简单的例子,以下是支付宝对芝麻信用分的定义:

依据用户各类消费及行为数据,结合互联网金融借贷信息,运用云计算及机器学习等技术,通过逻辑回归、决策树、随机森林等模型算法,对各维度数据进行综合处理和评估,在用户信用历史、行为偏好、履约能力、身份特质、人脉关系五个维度客观呈现个人信用状况的综合分值。

注意人脉关系这个维度,用通俗的话说就是你好友中混的最差的哥们都开玛莎拉蒂,月消费几十万,那么你的消费履约能力应该也不差

KNN原理图片示例

如图所示,算法的本质就是寻找𝑘个最近样本,然后基于最近样本做“预测”。对于离散型的因变量来说,从𝑘个最近的已知类别样本中挑选出频率最高的类别用于未知样本的判断;对于连续型的因变量来说,则是将𝑘个最近的已知样本均值用作未知样本的预测。

3、算法步骤&关键点

  • 确定未知样本近邻的个数𝑘值。
  • 根据某种度量样本间相似度的指标(如欧氏距离)将每一个未知类别样本的最近𝑘个已知样本搜寻出来,形成一个个簇。
  • 对搜寻出来的已知样本进行投票,将各簇下类别最多的分类用作未知样本点的预测。

3.1、K值的选择

根据经验发现,不同的𝑘值对模型的预测准确性会有比较大的影响,如果𝑘值过于偏小,可能会导致模型的过拟合;反之,又可能会使模型进入欠拟合状态。

以芝麻分的例子来说,是选取你认识的所有人来推断你的信用呢还是选取经常和你有金钱或信息来往的人进行推断呢?

不同K值选择导致的结果

目前有两种K值选择方案:

  • 第一种:设置k近邻样本的投票权重,假设读者在使用KNN算法进行分类或预测时设置的k值比较大,担心模型发生欠拟合的现象,一个简单有效的处理办法就是设置近邻样本的投票权重,如果已知样本距离未知样本比较远,则对应的权重就设置得低一些,否则权重就高一些,通常可以将权重设置为距离的倒数。

  • 第二种:采用多重交叉验证法,该方法是目前比较流行的方案,其核心就是将k取不同的值,然后在每种值下执行m重的交叉验证,最后选出平均误差最小的k值。

3.2、样本间相似度的度量方法

3.2.1、欧式距离

欧氏距离

3.2.2、曼哈顿距离

曼哈顿距离

3.2.3、余弦相似度

余弦相似度

3.2.4、杰卡德相似系数

杰卡德相似系数与余弦相似度经常被用于推荐算法,计算用户之间的相似性。例如,A用户购买了10件不同的商品,B用户购买了15件不同的商品,则两者之间的相似系数可以表示为:

J(A,B)=\displaystyle \frac {|A \cap B|}{|A \cup B|}

其中,|A⋂B|表示两个用户所购买相同商品的数量,|A⋃B|代表两个用户购买所有产品的数量。例如,A用户购买的10件商品中有8件与B用户一致,且两个用户一共购买了17件不同的商品,则它们的杰卡德相似系数为8/17。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,186评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,858评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,620评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,888评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,009评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,149评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,204评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,956评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,385评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,698评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,863评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,544评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,185评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,899评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,141评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,684评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,750评论 2 351

推荐阅读更多精彩内容