局部敏感哈希LSH

LSH局部敏感哈希

问题场景:

快速的从海量高维数据集合中找到与某个数据最相似(距离最近)的一个数据或多个数据

局部敏感: 指样本越相似,经过哈希后的值越可能一样。

通过建立Hash Table的方式,我们期望能够获得O(1)的查找时间性能,其中的关键在于选取一个hash function,将原始数据映射到对应的桶内(bucket)。以下以jacarrd距离为度量(对应的哈希函数为minhash)。简要介绍LSH。

MinHash算法

  1. 对A、B的n个维度,做一个随机排列(即对索引 [图片上传失败...(image-1dabad-1599725828667)]

    随机打乱)

  2. 分别取向量A、B的第一个非0行的索引值(index),即为MinHash值

image.png

得到AB的MinHash值后,可以有以下一个重要结论:

image.png

通过计算Sig(A) 与Sig(B)相等的比例,我们就可以估计AB的jaccard相似度了(近似相似,但是不会完全相等,除非全排列)。

数学证明

两个集合。A、B。对一行来说。他们的状态有三种

  1. A、B都为1,即表示A、B集合中都有这个单词

  2. A、B当中一个为1,当中一个不为1,即一个有这个单词,一个没有

  3. A、B都为0,即表示A、B中都没有这个单词。

令第一种状态有x次,第二种状态y次,第三种状态z次

jaccard = x/(x+y)

再看minhash,由于排列是随机的,在出现第二种状态之前出现第一种状态的概率为x/(x+y)

代码模拟

import random
import numpy as np
​
A = set(['a', 'b', 'c', 'd'])
B = set(['a', 'c', 'e', 'f'])
​
sigA = []
sigB = []
​
U = list(A.union(B))
I = A.intersection(B)
​
# minhash
​
for x in range(0, 1000000):
 # step1 对A、B的n个维度,做一个随机排列(即对索引随机打乱)
 r_u = random.shuffle(U)
 # step2 分别取向量A、B的第一个非0行的索引值(index),即为MinHash值
 for index in range(0, len(U)):
 if U[index] in A:
 sigA.append(index)
 break
 for index in range(0, len(U)):
 if U[index] in B:
 sigB.append(index)
 break
​
print('jacarrd distance: ', np.sum(np.array(sigA) == np.array(sigB)) / len(sigA))

LSH

image.png

上面的集合摘要采用了12个不同的hash函数计算出来,然后分成了B = 4个区间。前面已经分析过,任意两个集合(S1,S2)对应的Minhash值相等的概率r = Jac(S1,S2)。先分析区间1,在这个区间内,P(集合S1等于集合S2) = r3。所以只要S­1和S2的Jaccard相似度越高,在区间1内越有可能完成全一致,反过来也一样。那么P(集合S1不等于集合S2) = 1 - r3。现在有4个区间,其他区间与第一个相同,所以P(4个区间上,集合S1都不等于集合S2) = (1 – r3)4。P(4个区间上,至少有一个区间,集合S1等于集合S2) = 1 - (1 – r3)4。这里的概率是一个r的函数,形状犹如一个S型,如下:


image.png

如果令区间个数为B,每个区间内的行数为C,那么上面的公式可以形式的表示为:
P(B个区间中至少有一个区间中两个结合相等) = 1 - (1 - rC)B
令r = 0.4,C=3,B = 100。上述公式计算的概率为0.9986585。这表明两个Jaccard相似度为0.4的集合在至少一个区间内冲撞的概率达到了99.9%。根据这一事实,我们只需要选取合适的B和C,和一个冲撞率很低的hash函数,就可以将相似的集合至少在一个区间内冲撞,这样也就达成了本节最开始的目的:将相似的集合放到一起。具体的方法是为B个区间,准备B个hash表,和区间编号一一对应,然后用hash函数将每个区间的部分集合映射到对应hash表里。最后遍历所有的hash表,将冲撞的集合作为候选对象进行比较,找出相识的集合对。整个过程是采用O(n)的时间复杂度,因为B和C均是常量。由于聚到一起的集合相比于整体比较少,所以在这小范围内互相比较的时间开销也可以计算为常量,那么总体的计算时间也是O(n)。


image.png

以s1为例,遍历4个hash table取出所有hash table中冲撞的集合( s2, s4 )进行进一步的计算,从而得到距离最近的元素。

参考:

https://blog.csdn.net/weixin_43098787/article/details/82838929

https://blog.csdn.net/weixin_43461341/article/details/105603825

https://www.cnblogs.com/mengfanrong/p/5058919.html

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,717评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,501评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,311评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,417评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,500评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,538评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,557评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,310评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,759评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,065评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,233评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,909评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,548评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,172评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,420评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,103评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,098评论 2 352